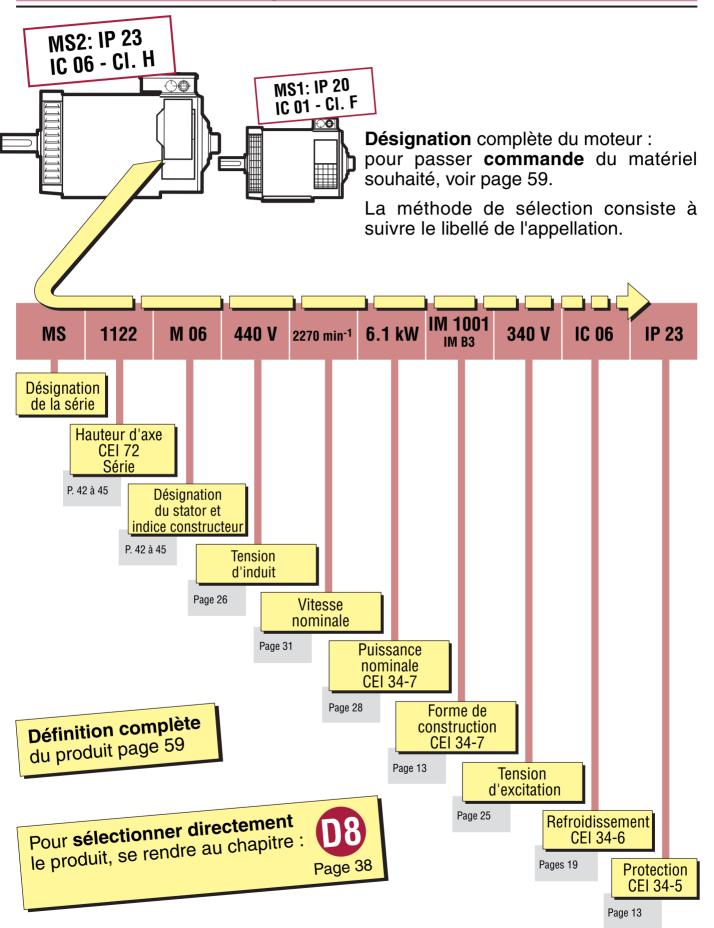


Réf 1348 - F33 / d - 4 96

-MS1 - MS2 -

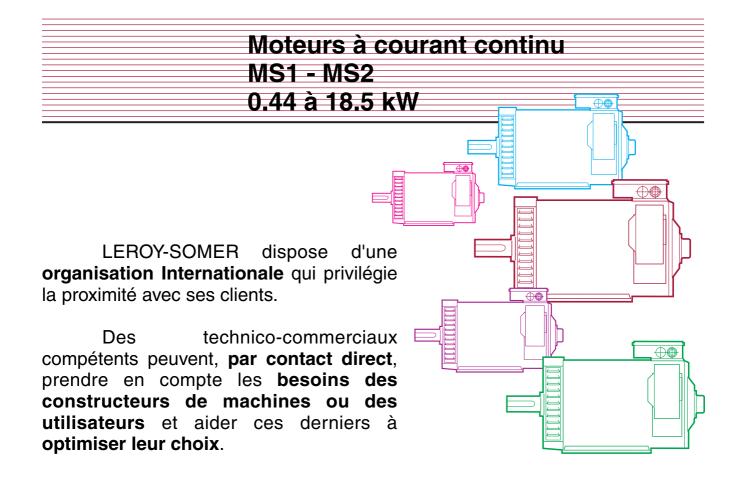
Moteurs à courant continu - 0.44 à 18.5 kW
Catalogue technique

Moteurs à courant continu fermés et ouverts 0.06 à 560 kW

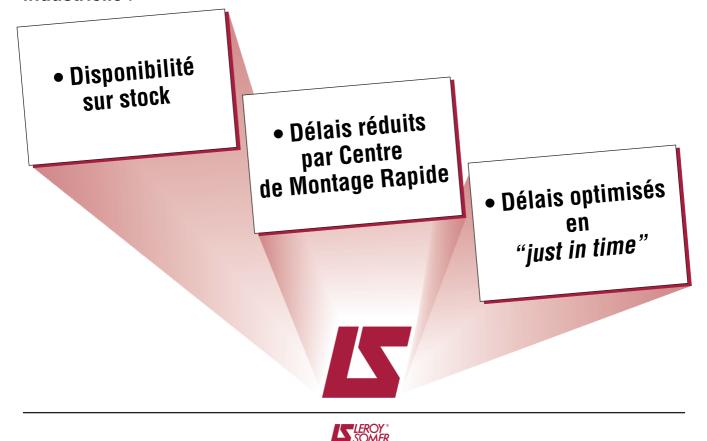

Gamme LEROY-SOMER Série MS1 - MS2 Moteur fermé à aimants Moteur fermé bobiné

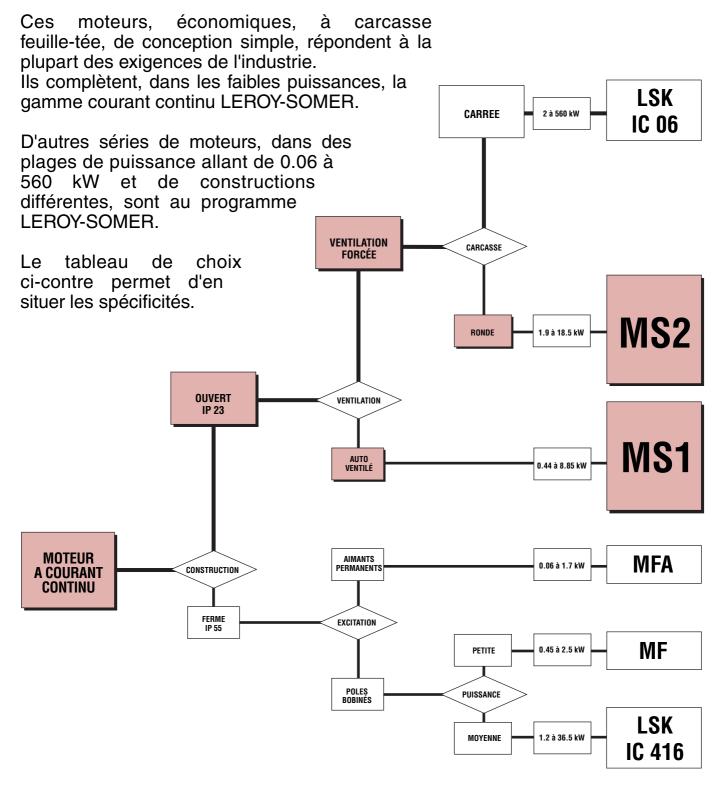
Moteur carter fonte bobiné

Moteur ouvert bobiné



Désignation


Les produits et matériels présentés dans ce document sont à tout moment susceptibles d'évolution ou de modifications, tant au plan technique et d'aspect que d'utilisation. Leur description ne peut en aucun cas revêtir un aspect contractuel.


La présence de LEROY-SOMER dans tous les pays industriels est une garantie de compétence pour les exportateurs, tant dans le domaine du respect des normes de fabrication que de la disponibilité du service sur place.

Enfin, LEROY-SOMER a mis au point un système de disponibilité de ses produits qui permet de s'adapter à toutes les formes d'organisation industrielle :

Moteurs à courant continu MS1 - MS2 0.44 à 18.5 kW

LEROY-SOMER décrit dans ce catalogue les moteurs à courant continu MS de 0.44 à 18.5 kW.

Moteurs à courant continu MS1 - MS2 Sommaire

PAG	GES	PA	GES
A - INFORMATIONS GENERALES		C5 - Raccordement au réseau	20
		C5.1 - La boîte à bornes	20
A1 - La qualité normalisée	8	C5.2 - Les planchette à bornes	21
AT La qualité normaisse	O	C5.3 - Schémas de branchement	21
		C5.4 - Borne de masse	21
A2 - Conformité aux normes	9		
		C6 - Couplage des moteurs	22
		C6.1 - Moteur	22
_		C6.2 - Raccordement des accessoires	22
B - ENVIRONNEMENT		C7 - Possibilités d'adaptation	23
B1 - Contraintes liées à l'environnement	10		
B1.1 - Conditions normales d'utilisation B1.2 - Correction en fonction de l'altitude	10	FONCTIONNEMENT	
et de la température	10	D - FONCTIONNEMENT	
B1.3 - Humidité relative et absolue			
B1.4 - Impregnation et protection renforcée		D1 - Tension d'alimentation	25
B1.5 - Réchauffage	. 10	D1.1 - Règlements et normes	25
B1.5.1 - Par résistances additionnelles (option)	10	D1.2 - Alimentation	25
B1.5.2 - Réchauffage par alimentation		D1.2.1 - Excitation	25
courant continu	10	D1.2.2 - Induit	26
		D1.3 - Définitions	
B2 - Imprégnation et protection renforcée	12	D1.3.1 - Dissymétrie de courant	26
DO Deieture	10	D1.3.2 - Vitesse de variation du courant	
B3 - Peinture	12	D1.3.3 - Facteur de forme	26
		D2 - Classe d'isolation	27
C - CONSTRUCTION		D3 - Puissance - Moment - Rendement	28
		D3.1 - Définitions	28
C1 - Indices de fixation et de position - Indices de protection	13	D3.2 - Calcul du moment accélérateur et	
		du temps de démarrage	28
C2 - Pièces constitutives	14	D3.3 - Temps de démarrage et temps d'induit bloqué	28
		D3.4 - Détermination du moment en régime intermittent .	
C3 - Roulements	15		
		D4 - Vitesse - Surcharges	31
C3.1 - Type et principe de montage standard		D4.1 - Définitions	31
C3.1.1 - Charge radiale (calcul) C3.1.2 - Charge axiale		D4.1.1 - Vitesse nominale n	
C3.1.2 - Onlarge axiale	10	D4.1.2 - Vitesse maximale mécanique $n_{\text{max méca}}$	31
C3.2.1 - Evolution de la durée de vie		D4.1.3 - Plage de vitesse	31
des roulements	17	D4.1.4 - Plage d'utilisation	
C3.2.2 - Charge radiale		D4.2 - Fonctionnement	
C3.2.3 - Charge axiale		D4.2.1 - Fonctionnement à moment constant	31
ge anale	. •	D4.2.2 - Surintensité	31
C4. Mode de refreidiscement	10	D4.3 - Capacité de surcharge	31
C4 - Mode de refroidissement	19	D4.4 - Vitesses variables	32
C4.1 - Indices standard		D4.4.1 - Fonctionnement	
C4.2 - Caractérisitiques de la ventilation forcée	. 19	D4.4.2 - Variateurs	32

Les produits et matériels présentés dans ce document sont à tout moment susceptibles d'évolution ou de modifications, tant au plan technique et d'aspect que d'utilisation. Leur description ne peut en aucun cas revêtir un aspect contractuel.

Moteurs à courant continu MS1 - MS2 Sommaire

PA	GES	P	PAGES
D5 - Bruits et vibrations	33	F - DIMENSIONS	
D5.1 - Niveau de bruit	33	F1 - Encombrements MS1	46
D5.1.2 - Corrections des mesures D5.2 - Niveau de vibrations des machines - Equilibrage		F2 - Encombrements MS2	47
D6 - Optimisation de l'utilisation	35		
D6.1 - Protections D6.2 - Détection thermique incorporée		G - EQUIPEMENTS OPTIONNELS	
		G1 - Ventilation (MS2)	48
D7 - Mode de freinage	36	G1.1 - Détection de flux d'air	48
D7.1 - Freinage électrique		G1.2 - Filtre à d'air	48
D7.1.2 - Freinage par récupération d'énergie		G2 - Détection de vitesse	49
D7.2 - Option freinage mécanique		G2.1 - Dynamo tachymétrique	49
D7.2.1 - Définitions D7.2.2 - Paramètres		G2.2 - Générateur d'impulsion (GI ou codeur) G2.3 - Dynamo tachymétrique plus générateur d'impulsion	
D8 - Méthode et aide à la sélection	38	G2.4 - Accouplement pour détecteur de vitesse	
D8.1 - Environnement	38		
D8.2 - Moteur : principe de sélection	38	G3 - Options mécaniques	51
D8.2.1 - Puissance	38	G3.1 - Frein mécanique	51
D8.2.2 - Tension d'induit	38	G3.2 - Brides exécutables sur option	51
D8.2.3 - Caractéristiques	38	G3.3 - Deuxième bout d'arbre	51
D8.2.4 - Corrections	38	G3.4 - Exécution aux normes NEMA	
D8.3 - Motovariateur	38	G3.5 - Montage universel	51
D8.3.1 - Questionnaire	38		
D8.3.2 - Sélection	38	_	
D8.4 - Exemples de sélection		H - MAINTENANCE / INSTALLATION	
D8.5.1 - Correction en fonction de l'altitude et de la température ambiante D8.5.2 - Correction en fonction du service		H1 - Chute de tension dans les câbles (norme C15-100)	52
BO.O.Z GOITECTION CIT TO ICION du SCIVICE	00	H2 - Impédance de mise à la terre	52
		H3 - Masses et dimensions des emballages	53
		H4 - Identification	54
E - CARACTERISTIQUES ELECTRIQUES		H4.1 - Plaque signalétique	54
		H4.2 - Vue éclatée MS1	55
E0 - Disponiblité en fonction de la construction	40	H4.3 - Vue éclatée MS2	56
E1 - Tables de sélection : MS1	42	H5 - Maintenance	57
		Récapitulatif du standard MS1 - MS2	50
F2 - Tables de sélection : MS2	43	Informations nécessaires à la commande	50 59

Copyright 1996: MOTEURS LEROY-SOMER

Index

	PAGES		PAGES
Abréviations (pour tables de sélection)	41	Echauffement	27
Accessoires (raccordement)	22	Effort radial	16
AFAQ	8	Emballages	53
Alimentation (tension d'): normes	25	Entraîneur (pour GI)	50
Altitude	10	Environnement	10
Applications	32	Equilibrage	34
Arbre	14	Excitation (tension d')	25
Autoventilé (moteur), IC 01	19 & 51	Exemples de sélection	38-39
B alais	14	Facteur de charge	30
Boîte à bornes	14 & 20	Facteur de correction	39
Borne de masse	20	Facteur de forme	26
Branchement	21	Facteur de marche	30
Bride d'adaptation	51	Fixation (mode de)	13
Brides exécutables sur option	51	Filtre à air	48
Bride étanche	15	Flasques et paliers	14
Bruits	33	Formes de construction	13
		Frein (caractéristiques)	36
Câbles	52	Frein (dimensions)	51
Capacité de surcharge		Freinage	35-36
Caractéristiques électriques	_	•	
Caractéristiques (moteur ventilation)		O for fundamental linear states	50
Certification		G énérateur d'impulsions	50
Charge axiale admissible			
Charge dynamique		Humidité	10
Charge radiale admissible (roul. à billes)			
Chute de tension dans les câbles		Identification	54
Classe d'isolation		Impédance de mise à la terre	52
Clavette		Imprégnation	10-12
Codeur: voir générateur d'impulsions		Indices de protection	13
Collecteur		Indices de protection	19
Conformité aux normes		Induit	14
Construction	_	Induit (tension d')	
Cotes d'encombrement	_	Informations nécessaires à la commande	59
Couleur (peinture)		Inversion du sens de rotation	
Couplage des moteurs		ISO 9002	8
Courant moyen (régime intermittent)		ISO (normes)	9
Couronne porte-balais		Isolation (classe d')	27
Démarrages	28 & 31	Joint d'étanchéité	15
Délai de réalisation			
Détections thermiques			4-
Détection de flux d'air		Lubrification des roulements	17
Détection de vitesse	49-50		
Deuxième bout d'arbre		Maintenance	57
DIAMIS		Masse (borne de)	
Dimensions		Matériaux utilisés	
Disponibilité	_	Méthode et aide à la sélection	
Dissymétrie de courant		Mise à la terre	
Durée de vie des roulements		Moment accélérateur	
Dynamo tachymétrique	49	Moment moyen (régime intermittent)	30

Т			
-	_	_	
и			
-	_	_	
и			\mathbf{v}

	PAGES
Moment de freinage	36
Montage standard (roulement à billes)	15
Montage universel (pour réducteur)	51
Monophasé (alimentation en)	26
N EMA	51
Niveau de bruit	33
Niveau de vibration	34
Nomenclature	55-56
NORMES	9
Numéro du moteur	54
Options mécaniques	51
Options vitesse variable	49-50
Peintures	12
Pièces constitutives	14
Plage de vitesse	31
Planchettes à bornes	21
Plaque signalétique	54
Pôles auxilliaires	14
Positions de fonctionnement	13
Positions de la boîte à bornes	20
Positions de la ventilation forcée	20
Possibilités d'adaptation	23-24
Poulies (entraînement par)	16
Préparation des supports (peinture)	12
Presse étoupe	20
Protection (circuit d'alimentation)	35
Protection (indice de)	13
Protections thermiques	35
PTO	35
Puissance	28
Quadrant (de fonctionnement)	32
Qualité	8
Raccordement	20
Raccordement des accessoires	22
RAQ	8
Réchauffage	23
Régime intermittent	30
Régime intermittent (moment en)	30
Refroidissement (mode de)	19
Rendement	28
Réseau de distribution	25
Résolution	50
Roulements	15 à 18
Sahámaa da branahamant	01

	PAGES
Sélection (exemples de)	38-39
Sélection (méthode de)	38
Sélection (tables de)	42 à 45
Self additionnelle (calcul)	26
Sens de rotation	2
SIAR	8
Sondes CTP	35
Standard MS: récapitulatif	58
Stator	14
Surcharge (capacité de)	3
Température ambiante	10
Temps de démarrage	28
Temps d'arrêt et de freinage	36
Temps d'induit bloqué admissible	28
Tension d'alimentation	25-26
Thermistances	35
Type de roulement (billes)	15
Utilisation (exemples d')	38-39
Variateur	32
Ventilation	14 & 19
Ventilation forcée (caractéristiques)	19
Ventilation (options)	48
Vibrations	34
Vitesse nominale	3
Vitesse maximale mécanique	3
Vitesse de rotation	3
Vitesse de variation du courant	26
Vitesse variable	32
Vues éclatées	55-56
Zone de fonctionnement	10 à 12

Moteurs à courant continu MS1 - MS2 Informations générales

A1 - La qualité normalisée

Les entreprises industrielles évoluent dans un environnement de plus en plus compétitif. Le taux d'engagement des équipements industriels a une incidence considérable sur la productivité. LEROY-SOMER répond complètement à cette exigence en proposant des moteurs qui correspondent à des standard de qualité très précis.

L'approche qualité de la performance d'un produit commence toujours par la mesure du niveau de satisfaction des clients.

L'étude attentive et volontariste de cet indice donne une évaluation très précise des points à surveiller, améliorer et contrôler.

Depuis la démarche administrative de passation de commande, jusqu'à l'étape de mise en route en passant par les études, les méthodes de lancement et de production, tout est étudié de façon à décrire très clairement les processus engagés.

Les process peuvent, à cette occasion, faire l'objet d'amélioration. Les personnels impliqués participent à des cycles de formation ou de perfectionnement dans l'exécution de leurs tâches. Mieux armés pour pratiquer leur métier, ils accroissent très largement leur motivation.

Ce concept de qualité ne se résume pas à un programme, mais il correspond à une réalité qui inspire chacun dans sa tâche. Il était important que LEROY-SOMER fasse connaître à ses clients son exigence qualité.

LEROY-SOMER a confié la certification de son savoir-faire à des organismes internationaux.

Cette certification est accordée par des auditeurs professionnels et indépendants qui constatent le bon fonctionnement du système assurance qualité de l'entreprise.

L'ensemble des activités, contribuant à l'élaboration du produit, est ainsi officiellement certifié.

ISO 9001, c'est l'exigence normalisée nécessaire à une entreprise servant des clients internationaux.

Moteurs à courant continu MS1 - MS2 Informations générales

A2 - Conformité aux normes

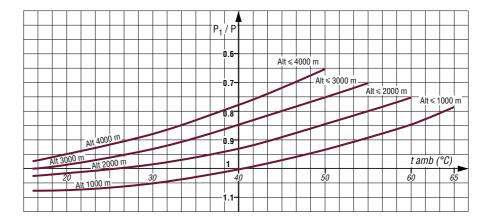
Les moteurs MS répondent aux normes ci-dessous pour ce qui concerne les machines alimentées en courant continu.

Référence	Date	Normes Internationales
CEI 34-1	1990	Machines électriques tournantes : caractéristiques assignées et caractéristiques de fonctionnement.
CEI 34-5	1981	Machines électriques tournantes : classification des degrés de protection procurés par les enveloppes des machines tournantes.
CEI 34-6	1991	Machines électriques tournantes (sauf traction) : modes de refroidissement.
CEI 34-7	1972	Machines électriques tournantes (sauf traction) : symbole pour les formes de construction et les dispositions de montage.
CEI 34-8	1990	Machines électriques tournantes : marques d'extrémités et sens de rotation.
CEI 34-9	1990	Machines électriques tournantes : limites de bruit.
CEI 34-14	1988	Machines électriques tournantes : vibrations mécaniques des machines. Mesure, évaluation et limites d'intensité vibratoire.
CEI 38	1983	Tensions normales de la CEI.
CEI 72-1	1991	Dimensions des brides entre 55 et 1080.
CEI 85	1984	Evaluation et classification thermique de l'isolation électrique.
CEI 721-2-1	1982	Classification des conditions d'environnement dans la nature. Température et humidité.
CEI 1000 2-1 et 2	1990	Compatibilité électromagnétique (CEM) : environnement.
Guide 106 CEI	1989	Guide pour la spécification des conditions d'environnement pour la fixation des caractéristiques de fonctionnement des matériels.
ISO 281	1990	Roulements - Charges dynamiques de base et durée nominale.
ISO 1680-1 et 2	1986	Acoustique - Code d'essai pour la mesure de bruit aérien émis par les machines électriques tournantes : méthode d'expertise pour les conditions de champ libre au-dessus d'un plan réfléchissant.
ISO 8821	1989	Vibrations mécaniques - Equilibrage. Conventions relatives aux clavettes d'arbre et aux éléments rapportés.

Référence	Date	Normes Nationales				
	_	FRANCE				
C 00 230	1986	Arrêté ministériel du 29 Mai 1986 : tensions normales de 1 ^e catégorie des réseaux de distribution d'énergie électrique.				
NFC 20-010	1986	Règles communes aux matériels électriques - Classification des degrés de protection procurés par les en-				
NFC 51-111	1981	Règles d'établissement des machines électriques tournantes.				
NFC 51-120	1980	Moteurs à courant continu de faible et moyenne puissance : cotes de fixation, raccordement, connexions in ternes.				
NFC 68-312	1985	Presse étoupe en matière métallique : règles particulières.				
NFS 31-026	1978	Détermination de la puissance acoustique émise par les sources de bruit : méthode de laboratoire en salle anéchoïque ou semi-anéchoïque.				
		ALLEMAGNE				
DIN 748/3		Zylindrische Wellenenden.				
DIN 40 050		IP Schutzarten ; Berührungs - Fremdkörper - und Wasserschutz für elektrische Betriebsmittel.				
DIN 42 948		Befestigungsflansche für elektrische Maschinen.				
DIN 42 955		Rundlauf der Wellenenden-Koaxialität und Planlauf.				
DIN 45 635		Geräuschmessungen an Maschinen.				
DIN 57 530/8		Anschlußbezeichnung von umlaufenden elektrischen Maschinen.				
DIN 57 530/8		Geräuschgrenzwerte.				

MS1 - MS2

Environnement


B1 - Contraintes liées à l'environnement

▼ Cœfficients de correction en fonction de l'altitude et de la température ambiante.

B1.1 - CONDITIONS NORMALES D'UTILISATION

Selon la norme CEI 34-1, les moteurs standard peuvent fonctionner dans les conditions normales suivantes :

- température ambiante comprise entre + 5 et + 40 °C,
- altitude inférieure à 1000 m,
- pression atmosphérique : 1050 m bar,
- zone de fonctionnement 2 (humidité absolue comprise entre 5 et 23 g/m³: voir abaque page suivante),
- air ambiant chimiquement neutre et sans poussière.

B1.2 - CORRECTION EN FONC-TION DE L'ALTITUDE ET DE LA TEMPERATURE AMBIANTE

Pour des conditions d'emploi différentes, on appliquera le coefficient de correction de la puissance indiquée sur l'abaque ci-dessus en conservant la réserve thermique.

Le rapport P_1 / P donne le coefficient de correction.

P₁: puissance corrigéeP: puissance catalogue

B1.3 - HUMIDITE RELATIVE ET ABSOLUE

L'humidité tient un rôle important dans le fonctionnement du moteur par la contribution à la formation de la patine du collecteur. Il y a lieu de tenir compte du taux d'humidité contenu dans l'air ambiant pour assurer un fonctionnement optimal. C'est ce taux qui va définir la zone de fonctionnement de la machine. Ces zones sont matérialisées sur l'abaque de la page suivante

Les balais sont étudiés pour répondre à des plages d'humidité assez larges. C'est donc une valeur moyenne qui sera prise en compte pour leur choix.

Définitions :

Le taux d'humidité dépend de la quantité de vapeur d'eau en suspension dans l'air, donc des conditions climatiques.

Humidité absolue (en g/m 3) H_a : masse de vapeur d'eau contenue dans l'air.

Humidité relative (%) H_r:

rapport entre la masse de vapeur d'eau contenue dans un volume donné d'air et celle que contiendrait ce même volume, à la même température et à la même pression s'il était saturé. Elle est parfois appelée état hygrométrique. C'est elle qui est donnée par les appareils de mesure les plus simples.

Ces deux valeurs sont liées (voir page 11) .

Nota: dans les climats tempérés, l'humidité relative est comprise entre 60 et 90 %. Pour les valeurs d'ambiances particulières, se reporter au tableau 1 page 12 qui fait la relation entre l'humidité relative et les niveaux d'imprégnation.

B1.4 - IMPREGNATION ET PROTECTION RENFORCEE

Il est indispensable de tenir compte des conditions climatiques de fonctionnement. Le taux d'humidité, contenu dans l'atmosphère, et la température ambiante nécessitent des constructions différentes.

LEROY-SOMER a mis en place des procédures de réalisation des machines en fonction des différents paramètres. Pour simplifier votre choix tout en acquérant une machine conforme à l'environnement, le tableau page 12 vous indique la protection en fonction de la zone de fonctionnement (voir abaque page suivante) et de la température ambiante. Les symboles utilisés recouvrent des associations de composants, de matériaux, des modes d'imprégnation, et des finitions (vernis ou peinture).

La protection des bobinages est généralement décrite sous le terme "tropicalisation".

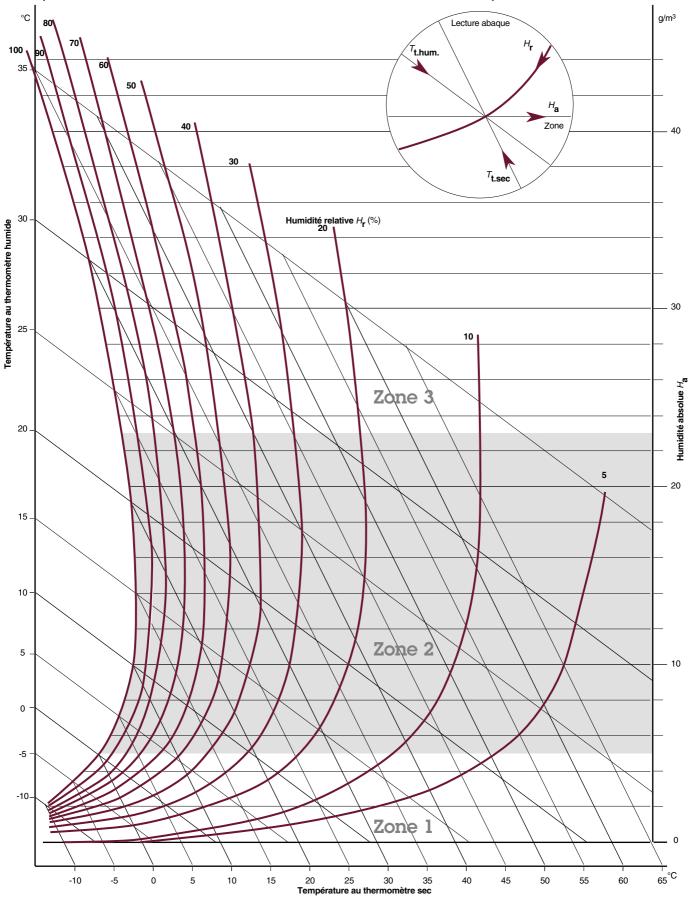
B1.5 - RECHAUFFAGE

B1.5.1 - Par résistances additionnelles (OPTION pour MS2 uniquement)

Un environnement à forte humidité et variations élevées de température nécessite l'utilisation de résistance de réchauffage pour éviter la condensation. Du type ACM 004 (puissance 25 W), constituée de ruban isolé fibre de verre positionné sur les têtes de bobine, elle permet de maintenir la température moyenne du moteur, autorisant un démarrage sans problème, et éliminant les inconvénients dus aux condensations (perte d'isolement des machines). Cette résistance doit être mise sous tension dès l'arrêt de la machine et mise hors-circuit pendant le fonctionnement.

Les fils d'alimentation de la résistance sont ramenés dans la boîte à bornes du moteur.

B1.5.2 - Par alimentation courant continu


Une solution alternative à la résistance de réchauffage est l'alimentation sous tension réduite (20% de la valeur nominale) des inducteurs

Les variateurs LEROY-SOMER DMV 2322 offrent cette possibilité. Sinon prévoir une alimentation par transformateur (avec éventuellement un redresseur) et une commutation séparée.

Moteurs à courant continu MS1 - MS2 Environnement

▼ Abaque de détermination de la zone de fonctionnement en fonction de l'humidité et de la température.

B

Moteurs à courant continu

MS1 - MS2

Environnement

B2 - Imprégnation et protection renforcée (1)

		Zones de fonctionnement*		
Température ambiante	Z1	72	Z3	Influence sur la construction
t<-16°C	sur devis	sur devis	_	
- 16 ≤ t < + 5°C	Ta 1	T1		
+ 5 ≤ t < + 40°C	Ta	Т	TC	Déclassement
+ 5 ≤ t ≤ + 65°C	Ta 2	T2	TC 2	croissant
t>+65°C	sur devis	sur devis	sur devis	•
Repère plaqué	Ta	T	TC	
Influence sur la construction	P	rotection croissante des bobinage	98	

Imprégnation standard

*:voir abaque page précédente.

(1): les moteurs MS 1 sont réalisés uniquement en version T (zone 2).

Les moteurs LEROY-SOMER sont protégés contre les agressions de l'environnement. Des préparations adaptées à chaque support permettent de rendre la protection homogène.

B3 - Peinture

Préparation des supports

SUPPORTS	PIECES	TRAITEMENT DES SUPPORTS		
Fonte	Paliers	Grenaillage + Couche primaire d'attente		
Acier	Accessoires	Phosphatation + Couche primaire d'attente		
Acier	Boîte à bornes - Capots - Grilles	Cataphorèse ou Flow coat hydrofour		
Alliage d'aluminium	Ventilation forcée - Boîte à bornes (MS2)	Grenaillage		
Polymère	Boîte à bornes (MS1)	Néant, mais absence de corps gras, d'agents de démoulage, de poussière incompatible avec la mise en peinture.		

Mise en peinture - Les systèmes

PRODUITS	AMBIANCE	SYSTEME	APPLICATIONS
MS1 - MS2	Peu ou non agressive, intérieur, climat tempéré.	Système I	1 couche finition polyuréthane - Vinylique 25/30 μ
MS2	Humide, climat tropical.	Système II	1 couche apprêt Epoxy 30 à 40 μ 1 couche finition polyuréthane - Vinylique 25/30 μ
MS2	Maritime, bord de mer	Système III	1 couche apprêt Epoxy 30 à 40 μ 1 couche intermédiaire Epoxy 30 à 40 μ 1 couche finition polyuréthane - Vinylique 25/30 μ
MS2	Chimique, agressive ou particulière	Systèmes spéciaux (nous consulter)	Marine nationale - Nucléaire Contacts importants avec base ou acide, etc.

Le système I s'applique au groupement de climats modérés et le système II au groupement de climats généraux, au titre de la norme NFC 20 000 (ou CEI 721.2.1)

Référence de la peinture standard LEROY-SOMER MS1 : RAL 7035 Référence de la peinture standard LEROY-SOMER MS2 : RAL 9005

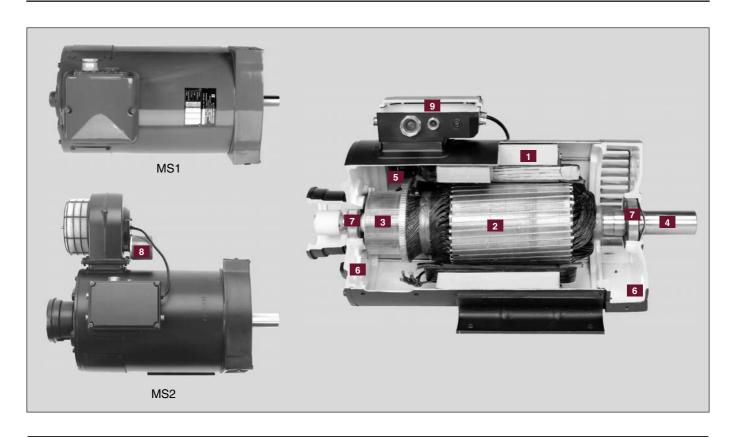
Construction

C1 - Indices de fixation et de position - Indices de protection

Indices de protection en fonction des indices de fixation et positions (selon Norme CEI 34-7)

	MS 1	MS 2	Positio	ns	MS 1	MS 2	Position	ns
Moteurs à pattes de fixation	IP 21	IP 23	IM 1001 (IM B3) - Arbre horizontal - Pattes au sol		IP 20	IP 20	IM 1071 (IM B8) - Arbre horizontal - Pattes en haut	
	IP 20	IP 20	IM 1051 (IM B6) - Arbre horizontal - Pattes au mur à gauche vue du bout d'arbre		IP 21	IP 20	IM 1011 (IM V5) - Arbre vertical vers le bas - Pattes au mur	
	IP 20	IP 20	IM 1061 (IM B7) - Arbre horizontal - Pattes au mur à droite vue du bout d'arbre		IP 21	IP 21	IM 1031 (IM V6) - Arbre vertical vers le haut - Pattes au mur	
Moteurs à bride de fixation à trous lisses (FF) Moteurs à pattes et bride de fixation à trous lisses (FF)	IP 21	IP 23	IM 3001 (IM B5) - Arbre horizontal		IP 21	IP 23	IM 2001 (IM B35) - Arbre horizontal - Pattes au sol	
	IP 21	IP 20	IM 3011 (IM V1) - Arbre vertical en bas		IP 21	IP 20	IM 2011 (IM V15) - Arbre vertical en bas - Pattes au mur	
	IP 21	IP 21	IM 3031 (IM V3) - Arbre vertical en haut		IP 21	IP 21	IM 2031 (IM V36) - Arbre vertical en haut - Pattes au mur	
Moteurs à bride								
de fixation à trous taraudés (FT) Moteurs à pattes et bride de fixation à trous taraudés (FT) :		IP 23	IM 3601 (IM B14) - Arbre horizontal			IP 23	IM 2101 (IM B34) - Arbre horizontal - Pattes au sol	
MS 2 uniquement		IP 20	IM 3611 (IM V18) - Arbre vertical en bas			IP 20	IM 2111 (IM V58) - Arbre vertical en bas - Pattes au mur	
		IP 21	IM 3631 (IM V19) - Arbre vertical en haut			IP 21	IM 2131 (IM V69) - Arbre vertical en haut - Pattes au mur	

Nota: pour la désignation IM, le quatrième chiffre indique le nombre de bouts d'arbre sortis. Ex.: IM 1002: moteur horizontal, fixation à pattes, avec deuxième bout d'arbre.


MS1 - MS2

Construction

C2 - Pièces constitutives

Descriptif des moteurs à courant continu MS1 - MS2 de LEROY-SOMER

Désignations	Matières	Commentaires
1 Stator (ou carcasse)	Tôle magnétique asssemblée Cuivre électrolytique.émaillé classe H	 - assemblage des tôles précontraint soudé par procédé TIG - pôles principaux intégrés sur toute la gamme - pôles auxiliaires rapportés (MS 1001, 1121 & 1122), ou intégrés (MS 1321 & 1322) - système d'isolation classe F (MS 1) ou H (MS 2)
2 Induit	Tôle magnétique isolée à faible taux de carbone. Cuivre électrolytique.émaillé classe H	 le faible taux de carbone garantit dans le temps la stabilité des caractéristiques magnétiques encoches semi fermées inclinées frettage renforcé par fibre de verre polymérisée à chaud système d'isolation classe F (MS 1) ou H (MS 2)
3 Collecteur	Cuivre à l'argent moulé sur résine	- type à talon - grand nombre de lames
4 Arbre	Acier	- rainure de clavette débouchante - clavette à bouts droits (MS 1), à bouts ronds (MS 2)
5 Couronne porte-balais Balais	Résine thermodure et acier traité Composé électrographitique	 moulée, rigide position de calage repérée porte-balais équidistants indéréglables
6 Flasques paliers	Fonte FGL	- flasque palier à bride FF à trous lisses (MS 801 à 1321) - flasque palier à bride FF à trous lisses ou FT à trous taraudés (MS 1122 à 1322)
7 Roulements et graissage	Acier	- roulements à billes, jeu C3 - de type 2RS, étanches, graissés à vie - précharge sur le roulement avant - roulement arrière bloqué en translation
8 Ventilation	Matériau composite (MS1) Alliage d'aluminium ou tôle (MS2)	- moteur auto ventilé (MS 801 à 1121 & 1321) - ventilation radiale (MS 1122 & 1322)
9 Boîte à bornes	Matériau composite (MS1) ou alliage d'aluminium (MS2)	- IP 55 (étanche) - orientable 4 directions - 4 bornes (MS 801 à 1121, 1122 & 1321) - 6 bornes (pour excitation série -parrallèle (MS 1322) - raccordement des options sur dominos (MS 2)

MS1 - MS2

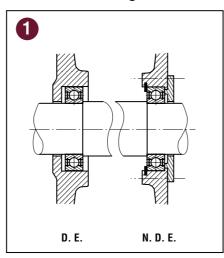
Construction

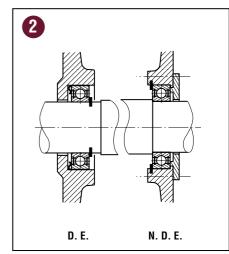
C3 - Roulements

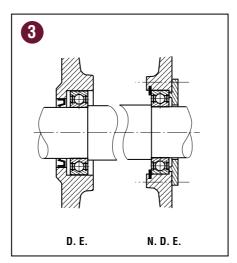
C3.1 - TYPE ET PRINCIPE DE MONTAGE STANDARD DES ROULEMENTS

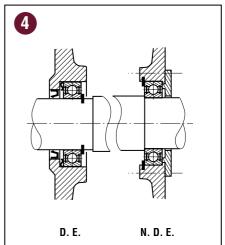
Le tableau ci-dessous indique les types de roulements utilisés et les options possibles pour chaque taille.

Le blocage de l'induit en translation est réalisé côté collecteur (roulement arrière). Pour les moteurs MS 2, les roulements sont mis en précharge par l'intermédiaire d'une rondelle élastique insérée entre le flasque et le roulement avant.


Les roulements utilisés sont du type étanche, à billes à gorge profonde, haute température, lubrifiés à vie avec une graisse à hautes performances, permettant une durée de vie L_{10h} de 20 000 heures dans de bonnes conditions d'environnement.


Option bride étanche


Pour répondre à certaines utilisations, les moteurs MS de LEROY-SOMER peuvent être réalisés avec l'option joint d'étanchéité dans la bride.


Important : Lors de la commande, bien préciser l'option choisie si nécessaire.

Schémas de montage des roulements (toutes positions)

Moteur	Roulement	Roulement	Mon	Référence	
MS	avant	arrière	Roulement	Option	schémas
Taille	(D.E.)	(N.D.E.)	étanche	joint	de montage
801	6204 2RS C3	6203 2RS C3	•		0
801	6204 2RS C3	6203 2RS C3	•	•	3
1001	6204 2RS C3	6203 2RS C3	•		0
1001	6204 2RS C3	6203 2RS C3	•	•	3
1121	6205 2RS C3	6204 2RS C3	•		0
1121	6205 2RS C3	6204 2RS C3	•	•	3
1122	6207 2RS C3	6204 2RS C3	•		2
1122	6207 2RS C3	6204 2RS C3	•	•	4
1321	6306 2RS C3	6305 2RS C3	•		0
1321	6306 2RS C3	6305 2RS C3	•	•	3
1322	6208 2RS C3	6305 2RS C3	•		2
1322	6208 2RS C3	6305 2RS C3	•	•	4

MS1 - MS2

Construction

C3.1.1 - Charge radiale admissible sur le bout d'arbre principal

Dans le cas d'accouplement par poulies-courroie(s), le bout d'arbre moteur portant la poulie est soumis à un effort radial $F_{\rm pr}$ appliqué à une distance x (mm) de l'appui du bout d'arbre de longueur E.

N.B.: la **tension de pose** des courroies devra être **inférieure à** la valeur de la charge statique de base C_o (obtenue par la méthode ISO 281).

ullet Effort radial agissant sur le bout d'arbre moteur: $F_{\rm pr}$

L'effort radial F_{pr} agissant sur le bout d'arbre exprimé en daN est donné par la relation:

$$F_{\rm pr} = 1.91 \times 10^6 \frac{P_{\rm N} \cdot k}{D \cdot n_{\rm N}} \pm P_{\rm P}$$

avec:

 $P_{\rm N}$: puissance nominale du moteur (kW) D : diamètre primitif de la poulie (mm) $n_{\rm N}$: vitesse nominale du moteur (min⁻¹) k : coefficient dépendant du type de transmission

P_P: poids de la poulie (daN)

Le poids de la poulie est à prendre en compte avec le signe + lorsque ce poids agit dans le même sens que l'effort de tension des courroies (avec le signe - lorsque ce poids agit dans le sens contraire à l'effort de tension des courroies).

Ordre de grandeur du cœfficient k *:

- courroies crantées: k = 1 à 1.5

- courroies trapézoïdales: k = 2 à 2.5

- courroies plates

• avec enrouleur: k = 2.5 à 3• sans enrouleur: k = 3 à 4. Nota: la largeur de la poulie ne doit pas dépasser le double de la longueur du bout d'arbre moteur.

Pour éviter le frottement de la poulie sur le flasque, la cote "a" devra être au minimum de:

a = 3mm.

Le montage poulies-courroie(s) est à proscrire pour les moteurs MS 1 dans le cas d'un montage IM 1071 (IM B8).

Attention: vérifier que le diamètre de la poulie est supérieur au minimum requis par le moteur.

En première approximation on peut prendre pour le calcul du diamètre minimal de la poulie la formule suivante:

$$\mathcal{O}_{\text{mini}} = \frac{2 \times M_{\text{N}}}{F_{\text{D}}} \times 2.5 \times 10^3$$

avec

 $\mathcal{Q}_{\text{mini}}$: diamètre minimal en mm M_{N} : moment nominal en N.m F_{R} : effort radial à x en N.

Quand le calcul ne donne pas satisfaction, il faut modifier le diamètre de la poulie et recontrôler le calcul.

Evolution de la durée de vie des roulements en fonction du cœfficient de charge k_R

Dans le cas où le cœfficient de charge $k_{\rm R}$ est supérieur à 1.05, il est nécessaire de consulter les services techniques en indiquant les positions de montage et les directions des efforts avant d'opter pour un montage spécial.

Les courbes de la page suivante donnent

suivant la nature de la charge (radiale, radiale et axiale, axiale positive ou négative) le coefficient de charge en fonction de la durée de vie des roulements.

• Charge radiale avec ou sans charge axiale

Pour une charge radiale $F_{\rm pr}$ ($F_{\rm pr} \neq F_{\rm R}$), appliquée à la distance x, la durée de vie L_{10h} des roulements évolue en première approximation en fonction du rapport k_R, comme indiqué sur les courbes page suivante, pour les montages standard (k_R = $F_{\rm pr}$ / $F_{\rm R}$, les deux valeurs étant exprimées dans la même unité).

Pour une charge radiale sans composante axiale, lire sur la courbe 1 la valeur du coefficient $k_{\rm R}$ correspondant à la durée de vie choisie.

En cas de composante axiale, faire la même opération pour la valeur de $k_{\rm R}$ radiale sur la courbe 1, pour la valeur axiale sur la courbe 2; la valeur du coefficient retenue sera la plus faible des deux.

C3.1.2 - Charge axiale

Dans le cas de composante radiale nulle, lire sur l'une des courbes 3 ou 4 en fonction du sens de l'effort axial la valeur du coefficient $k_{\rm R}$ correspondant à la durée de vie choisie.

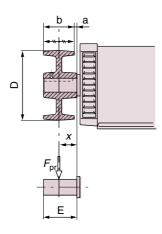
Charge axiale positive (courbe 3):

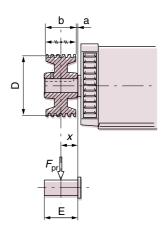
l'effort est exercé en tirant sur l'arbre moteur (de l'intérieur du moteur vers l'extérieur).

Charge axiale négative (courbe 4) :

l'effort exerce une poussée sur l'arbre du moteur (de l'extérieur vers l'intérieur).

• Effort radial admissible sur le bout d'arbre moteur: $F_{\rm R}$


Les tableaux de la page suivante indiquent, suivant le type de moteur, l'effort radial $F_{\rm R}$ admissible au milieu de l'arbre pour une durée de vie des roulements ${\rm L_{10h}}$ de 20000 h.

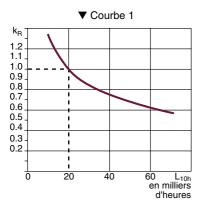

Pour une cote x l'effort radial F_{pr} admissible sera défini par la relation:

$$F_{pr} = F_R x \frac{0.5 \times E}{x}$$

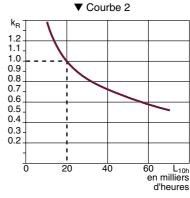
avec $x \le E$

* Une valeur plus précise du cœfficient k peut être obtenue auprès du fournisseur de la transmission.

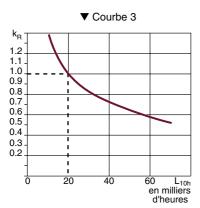
Construction

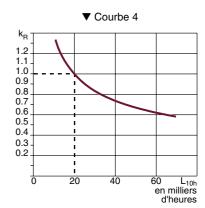

C3.2 - VALEURS ADMISSIBLES

C3.2.1 - Durée de vie des roulements


▼ Evolution de la durée de vie L_{10h} des roulements en fonction du cœfficient de charge k_R pour les montages standard.

 $Si k_{R} > 1.05$


nous consulter


▲ Coefficient de charge radiale

▲ Coefficient de charge axiale

▲ Coefficient de charge axiale positive

▲ Coefficient de charge axiale négative

C3.2.2 - Charge radiale admissible (en N, à charge axiale nulle) sur le bout d'arbre principal

Durée de vie nominale L_{10h} des roulements à billes : 20 000 heures ▶

Montage standard, position horizontale Moteur à pattes, à bride à trous taraudés FT, ou pattes et bride à trous taraudés FT.

F _r		Vitesse de rotation en min ⁻¹					
Type moteur	1000	1500	2000	2500	3000		
MS 801	579	471	412	363	334		
MS 1001	883	716	638	569	520		
MS 1121	893	736	647	579	520		
MS 1122	1815	1550	1373	1256	1167		
MS 1321 S	2109	1815	1628	1491	1393		
MS 1321 M	2070	1766	1570	1432	1324		
MS 1322 S	2276	1952	1756	1619	1501		
MS 1322 M	2246	1923	1717	1570	1462		

Durée de vie nominale L_{10h} des roulements à billes : 20 000 heures ▶

Montage standard, position horizontale Moteur à bride à trous lisses FF ou pattes et bride à trous lisses FF

F_{r}		Vitesse de rotation en min ⁻¹					
Type moteur	1000	1500	2000	2500	3000		
MS 801	540	441	383	343	304		
MS 1001	520	520	520	520	520		
MS 1121	834	697	598	540	491		
MS 1122	1697	1452	1295	1177	1089		
MS 1321 S	1334	1334	1334	1334	1285		
MS 1321 M	1334	1334	1334	1334	1256		
MS 1322 S	2080	1795	1609	1481	1383		
MS 1322 M	2090	1785	1599	1462	1354		

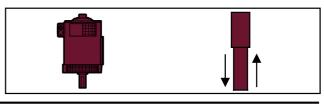
MS1 - MS2

Construction

C3.2.3 - Charge axiale admissible (en N, à charge radiale nulle) sur le bout d'arbre principal

 $\begin{tabular}{ll} Moteur horizontal \\ Dur\'ee de vie nominale L_{10h} des roulements \\ \end{tabular}$

à billes: 20 000 heures

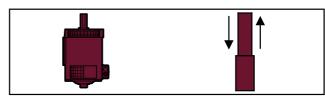


	Sens d'application de la charge									
Moteur	\longrightarrow	←	→	←	→	←	→	←	→	←
MS	Vite	esse	Vite	esse	Vite	sse	Vite	esse	Vite	sse
Taille	n = 1000	min ⁻¹	n = 1500	min ⁻¹	n = 2000	min ⁻¹	n = 2500	min ⁻¹	n = 3000	min ⁻¹
MS 801	549	549	441	441	383	383	343	343	314	314
MS 1001	549	549	451	451	392	392	343	343	314	314
MS 1121	716	716	589	589	510	510	451	451	412	412
MS 1122	814	598	697	481	618	402	559	343	520	304
MS 1321 S	1373	1373	1158	1158	1020	1020	922	922	853	853
MS 1321 M	1364	1364	1128	1128	981	981	883	883	804	804
MS 1322 S	1462	1207	1246	991	1118	863	1030	775	961	706
MS 1322 M	1462	1207	1246	991	1118	863	1030	775	961	706

Moteur vertical bout d'arbre dirigé vers le bas

Durée de vie nominale L _{10h} des roulements

à billes: 20 000 heures



		Sens d'application de la charge								
Moteur	↓	†	↓	†	↓	†	↓	†	↓	†
MS	Vite	esse	Vite	esse	Vite	sse	Vite	esse	Vite	esse
Taille	n = 1000	min ⁻¹	n = 1500	min ⁻¹	n = 2000	min ⁻¹	n = 2500	min ⁻¹	n = 300	0 min ⁻¹
MS 801	423	604	340	486	294	421	264	378	241	345
MS 1001	423	604	347	496	302	432	264	378	241	345
MS 1121	551	788	453	647	392	561	347	496	317	453
MS 1122	460	896	370	766	309	680	264	615	234	572
MS 1321 S	1056	1511	890	1273	785	1122	709	1014	657	939
MS 1321 M	1049	1500	868	1241	755	1079	679	971	619	885
MS 1322 S	928	1608	762	1370	664	1230	596	1133	543	1058
MS 1322 M	928	1608	762	1370	664	1230	596	755	543	1058

Moteur vertical bout d'arbre dirigé vers le haut

Durée de vie nominale L _{10h} des roulements

à billes: 20 000 heures

		Sens d'application de la charge								
Moteur	+	†	↓	†	↓	↑	↓	†	+	†
MS	Vite	sse	Vite	esse	Vite	sse	Vite	esse	Vite	esse
Taille	n = 1000	min ⁻¹	n = 1500	min ⁻¹	n = 2000	min ⁻¹	n = 2500	min ⁻¹	n = 3000	min ⁻¹
MS 801	423	604	340	486	294	421	264	378	241	345
MS 1001	423	604	347	496	302	432	264	378	241	345
MS 1121	551	788	453	647	392	561	347	496	317	453
MS 1122	626	658	536	529	475	442	430	378	400	335
MS 1321 S	1056	1511	890	1273	785	1122	709	1014	657	939
MS 1321 M	1049	1500	868	1241	755	1079	679	971	619	885
MS 1322 S	1124	1327	958	1090	860	950	792	852	740	777
MS 1322 M	1124	1327	958	1090	860	950	528	852	740	777

MS1 - MS2

Construction

C4 - Mode de refroidissement

C4.1 - INDICES STANDARD

Modes de refroidissement

Protection mécanique

Moteur auto ventilé

Code simplifié

IC01

Code standard IC0A1

IC1A7

MS 1: IP 20**

MS 2: IP 23 ou IP 20**

IC0A6 Ventilation montée sur moteur et circulation d'air libre avec ou sans filtre

MS 2: IP 23 ou IP 20**

Alimentation en air par entrée canalisée et sortie libre

*: les gaines et leurs adaptations sont hors fourniture LEROY-SOMER et doivent être de section suffisante et de longueur limitée pour ne pas réduire le débit d'air indiqué ci-après: voir § caractéristiques de la ventilation.

Mode de refroidissement standardisé

Selon la norme CEI 34 - 6, les moteurs standardisés de ce catalogue sont refroidis selon le mode IC 01 (auto ventilé) pour la série MS 1, IC 06, c'est-à-dire "machine refroidie par ventilation forcée, en utilisant le fluide ambiant (air) circulant à l'intérieur de la machine" pour la série MS 2.

Les moteurs MS de série, sauf spécification contraire, sont prévus pour un air de refroidissement à température comprise entre +5 et +40°C, avec une humidité correspondant à 5 à 23 g/m3 (grammes d'eau en suspension dans l'air: voir pages 10 & 11), exempt de poussières nuisibles et chimiquement neutre.

L'arrivée d'air frais se fait sur le collecteur en standard.

Attention: pour les températures inférieures à 0°C, il y a risque de formation de givre, en particulier sur la turbine de ventilation.

Ne pas mettre le moteur contre une paroi ou un obstacle afin de ne pas recycler l'air de refroidissement ce qui élèverait sa température et pourrait provoquer un échauffement anormal.

Nota : l'obturation (même accidentelle) des grilles de ventilation est très préjudiciable au refroidissement du moteur (moteur plaqué contre une paroi ou colmatées...).

C4.2 - CARACTERISTIQUES **DE LA VENTILATION FORCEE**

Radiale, de type à cage d'écureuil, elle est entraînée par un moteur asynchrone monophasé.

Son carter peut être en alliage d'aluminium ou en tôle.

Elle est montée en standard en position B; sur demande la ventilation peut être mise en position D. Les fils d'alimentation du moteur sont ramenés dans la boîte à bornes du moteur MS.

• Moteur monophasé:

220-240 V max, 50 Hz
200-220 V max, 60 Hz
73 W
0,34 A
2500 min ⁻¹
2 μF

Ventilateur:

Débit d'air	120 m ³ /h
Pression	290 Pa
Niveau sonore	55 dB(A)

^{**:} indice fonction de la position de fonctionnement; voir page 13.

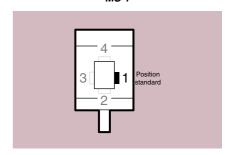
MS1 - MS2

Construction

C5 - Raccordement au réseau

C5.1 - LA BOITE A BORNES

MS 801, 1001, 1121 & 1321:


étanche, la boîte à bornes (B à B) est en matériau composite. Son presse étoupe (PE) est orientable dans quatre directions à 90 degrés.

▼ MS 1 Position standard

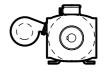
B à B: **A1**

▼ Positions du PE par rapport au bout d'arbre du moteur MS 1



MS 1122 & 1322:

métallique, étanche, elle est placée sur le dessus, vu bout d'arbre (voir figure ci-


*: alimentation de la ventilation forcée (VF) ramenée dans la boîte à bornes du moteur MS.

▼ MS 2 : Position de la boîte à bornes et de la ventilation forcée. Position standard

B à B: A1, VF: B*

▼ MS 2 : Position de la boîte à bornes et de la ventilation forcée. Autre possibilité

B à B: A3, VF: D *

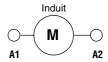
Configuration Presse étoupe: nombre et dimension en fonction de la position					tion			
moteur		VF pos	ition B		VF position D			
MS2	1	2	3	4	1	2	3	4
moteur standard	21 + 9	7	-	7	-	7	21 + 9	7
avec Détecteur Tachymétrique	21 + 9	2 x 7		2 x 7		2 x 7	21 + 9	2 x 7
avec Frein	21 + 9	7	-	9 + 7	-	7	21 + 9	9 + 7
avec Frein + Détecteur Tachymétrique	21 + 9	9 + 2 x 7		9 + 2 x 7		9 + 2 x 7	21 + 9	9 + 2 x 7

Construction

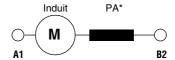
C5.2 - LES PLANCHETTES A BORNES

Les moteurs MS 801, 1001, 1121, 1122, 1321 et 1322 sont équipés en standard d'une planchette à 4 bornes.

Les repères sont conformes à la norme CEI 34 - 8 (ou NFC51 118).


Moment de serrage sur les écrous des planchettes à bornes. ▶

Borne	M4	M5	М6	M8	M10	M12	M14
Couple N.m	2	3.2	5	10	20	35	50


C5.3 - SCHEMAS DE BRAN-CHEMENT

Schémas électriques donnés à titre indicatif : se reporter aux schémas placés dans la boîte à bornes.

• moteur à pôles principaux seuls :

• moteur avec pôles auxilliaires :

• inducteurs sortie 2 bornes, monotension

*PA: pôles auxilliaires

C5.4 - BORNE DE MASSE

Elle est située à l'intérieur de la boîte à bornes.

Elle permet le raccordement de câbles de section au moins égale à la section des conducteurs d'alimentation.

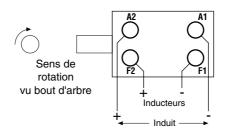
En règle générale, pour un même métal que celui des conducteurs principaux,

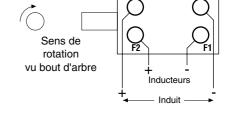
sa section est:

- celle du conducteur sous tension pour une section à 25 mm²,
- de 25 mm² pour une section comprise entre 25 et 50 mm²,
- 50 % pour des sections supérieures à 50 mm²

Elle est repérée par le sigle : $\frac{\bot}{-}$.

Moteurs à courant continu MS1 - MS2 Construction


C6 - Couplage des moteurs


C6.1 - MOTEUR

Pour changer le sens de rotation, inverser la polarité de l'excitation. Cette opération se fait hors tension et moteur arrêté.

MS 801, 1001, 1121, 1122, 1321, 1322

• Inducteurs sortie 2 bornes (sens de rotation horaire vu bout d'arbre (BA)).

MS 801

MS 1001, 1121, 1122, 1321, 1322

C6.2 - RACCORDEMENT DES ACCESSOIRES

(MS 2 uniquement : option)

Fait sur dominos, il comprend:

- sondes thermiques,
- résistances de réchauffage.

Toute sortie d'accessoire est repérée par une étiquette "drapeau".

Détection thermique des bobinages

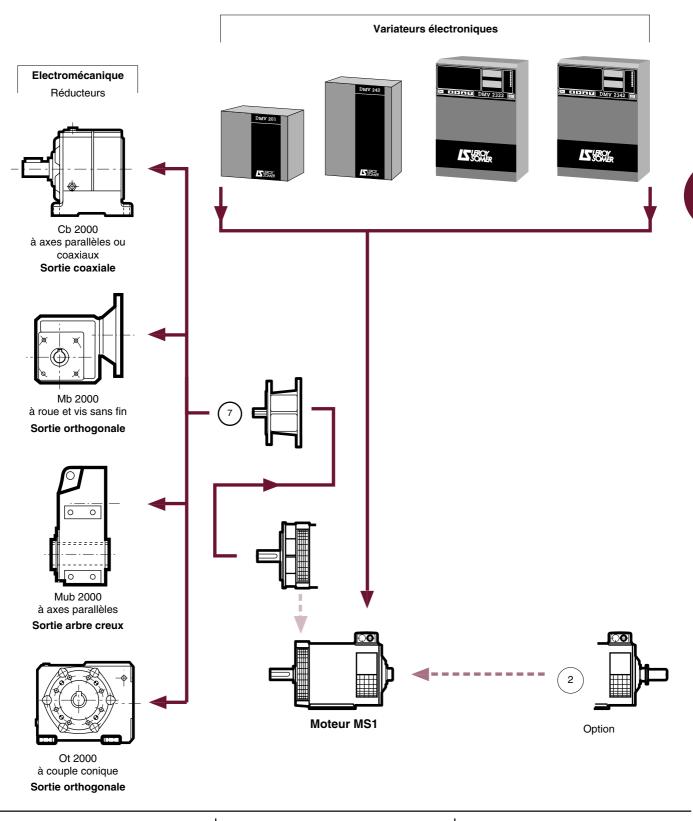
• à un niveau:

T1 - T2: déclenchement;

• à deux niveaux, les repères sont les suivants:

1T1 - 1T2: alarme

2T1 - 2T2: déclenchement.

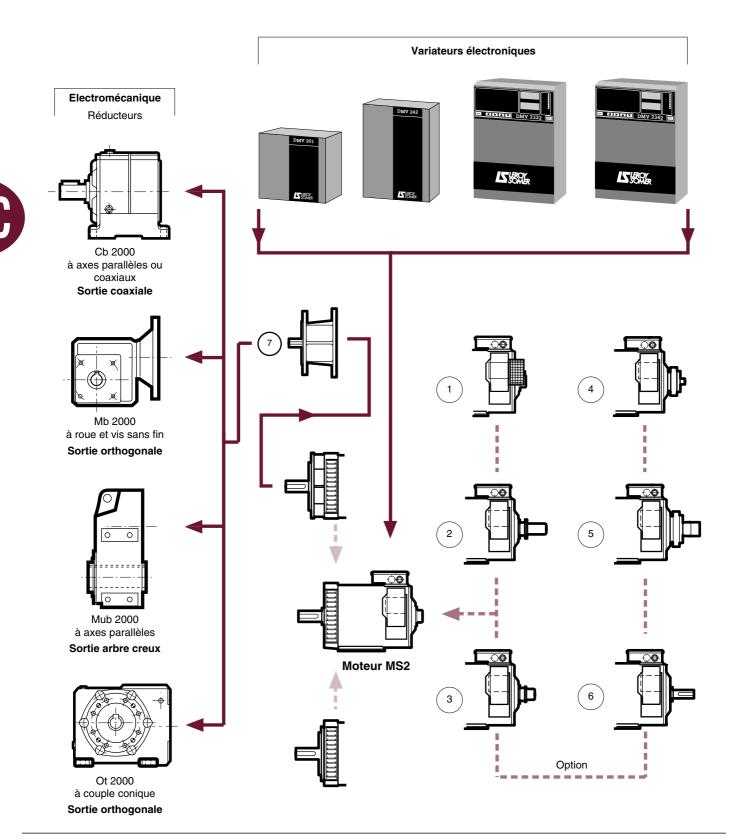

C

Moteurs à courant continu

MS1

Construction

C7 - Possibilités d'adaptation



Options

- 2 Dynamo tachymétrique (p 49)
- ⑦ Montage universel "U" pour accouplement avec réducteur de vitesse (p 51)

MS2

Construction

Options

- 1 Filtre à air (p 48)
- ② Dynamo tachymétrique (p 49)
- 3 Générateur d'impulsions (p 50)
- ④ Frein à manque de courant (p 36 & 51)
- ⑤ Frein + détecteur trachymétrique (p 49)
- 6 Deuxième bout d'arbre (p 51)
- 7 Montage universel "U" pour accouplement avec réducteur de vitesse (p 51)

Détection de flux d'air (p 48) Bride à trous lisses ou à trous taraudés

Moteurs à courant continu MS1 - MS2 Fonctionnement

D1 - Tension d'alimentation

D1.1 - REGLEMENTS ET NORMES (réseau de distribution)

Selon l'arrêté ministériel Français du 29 Mai 1986, repris par la norme C 00 230 de Mai 1986, "les tensions nominales de 1^{ere} catégorie des réseaux de distribution en courant alternatif (hors traction) sont de 230 / 400 V, soit 230 V en monophasé et 400 V en triphasé".

Dans un délai maxi de 10 ans, les tensions aux lieux de livraison devront être maintenues entre les valeurs extrêmes suivantes:

- Courant monophasé : 207 à 244 V
- Courant triphasé : 358 à 423 V

La norme CEI 38 qui a servi de base à l'arrêté ci-dessus indique que la tension de référence européenne est de 230 / 400 V en triphasé et de 230 V en monophasé avec tolérance +6% à -10% jusqu'en l'an 2003 et de ±10% ensuite.

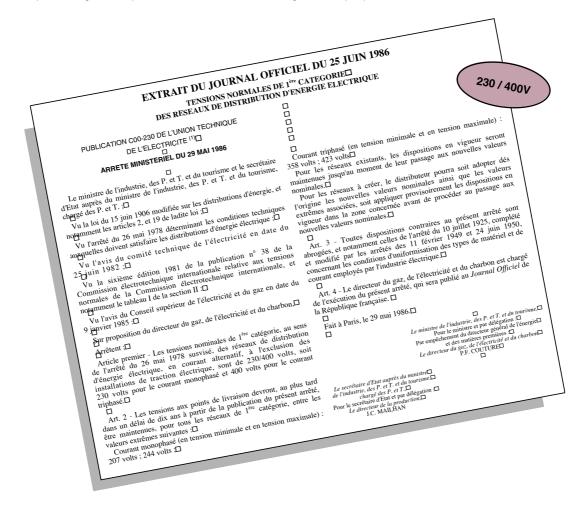
D1.2 - ALIMENTATION (tension redressée)

D1.2.1 - Excitation

La tension nominale d'excitation plaquée est 190 V; ces moteurs peuvent accepter une tension pouvant atteindre 210 V.

Les caractéristiques du catalogue sont données pour les valeurs d'excitation nominales plaquées; elles varieront légèrement en fonction de la tension réelle du réseau.

L'excitation est prévue pour une alimentation en courant continu redressé double alternance. Les puissances d'excitation indiquées sont calculées moteur en équilibre thermique. C'est la valeur du courant d'excitation à l'équilibre thermique qui est plaquée; elle est environ inférieure de 25% à la valeur à température ambiante.


▼ Tableau 1. - Correspondance entre tension d'excitation et tension réseau

Secteur monophasé

Tension secteur V	Tension d'excitation V
230	210
240	220
380	340 (1322 uniquement)
400	360 (1322 uniquement)
415	380 (1322 uniquement)

Règles concernant les changements de tension ou de réseau

On trouvera ci-après le règlement qui concerne la fourniture d'énergie électrique par les réseaux de distribution

MS1 - MS2

Fonctionnement

Le démarrage ne devra s'opérer qu'une fois l'excitation alimentée à sa tension nominale. L'alimentation comportera en outre une protection contre le défaut d'excitation (moteur à vide: le manque d'excitation provoque l'emballement du moteur).

Attention: en l'absence de refroidissement, l'excitation doit être impérativement mise hors tension.

D1.2.2 - Induit

Le tableau 1 ci-dessous donne les tensions maximales d'induit possibles en fonction de la tension du secteur alimentant le variateur.

▼ Tableau 2. - Correspondance entre tension d'induit et tension réseau

Alimentation à partir d'un secteur monophasé

Annionation a partir a an occioar monophaco		
Tension	Tension	
secteur	maximale d'induit	
V	V	
220 - 230	180 - 190	
380 - 400	310 - 320	
415	340	

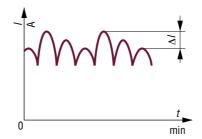
Alimentation à partir d'un secteur triphasé

Tension	Tension		
secteur	maximale d'induit		
V	V		
220	250		
230	260		
240	270		
380	440		
400	460		
415	470		
440	500		
500	570		
660	750		

Les valeurs maximales de tension d'induit incluent la tolérance de la norme sur les tensions d'alimentation.

D1.3 - DEFINITIONS

D1.3.1 - Dissymétrie de courant


Les composantes du courant alternatif dans le courant redressé d'alimentation ont une incidence sur les pertes, donc sur l'échauffement et sur la commutation.

Les machines sont dimensionnées pour tenir compte d'une dissymétrie de courant ΔI limitée à 10% (voir courbe 1).

D1.3.2 - Vitesse de variation du courant $\textbf{v}_{_{\boldsymbol{v}}}$

La vitesse de variation du courant v_v (en

▼ Courbe 1. - Dissymétrie du courant

ampères par seconde) doit être la plus basse possible en fonction du service de fonctionnement pour assurer la meilleure commutation.

$$v_{\rm V} = \frac{\partial I}{\partial t}$$

La valeur généralement admise est: $v_v = 200 \times I_n$ en A/s.

D1.3.3 - Facteur de forme FF D1.3.3.1 - Alimentation en triphasé

Le facteur de forme devra être inférieur à 1.04.

Le facteur de forme est le rapport du courant efficace au courant moyen:

$$FF = \frac{I_{\text{eff}}}{I_{\text{moy}}}$$
 où

 I_{eff} : courant efficace I_{moy} : courant moyen.

D1.3.3.2 - Alimentation en monophasé

La forme du courant sortant d'un variateur à thyristors dans le cas d'alimentation en monophasé, redressé 1 ou 2 alternances peut nécessiter l'utilisation d'une self de lissage. Par la diminution du courant de crête, la self améliore le facteur de forme, la commutation, diminue les vibrations et le bruit donc augmente la durée de vie de la machine. La valeur de la self additionnelle $L_{\rm a}$ est donnée par la formule suivante:

$$L_{a} = L_{2} - L_{1}$$

$$L_{2} = \frac{\sqrt{FF_{1}^{2} - 1}}{\sqrt{FF_{2}^{2} - 1}} \cdot L_{1}$$

avec

L₁: self du moteur (catalogue)

 L_2 : valeur intermédiaire de la self additionnelle (valeur utilisée pour le calcul de L_a)

FF₁: facteur de forme de l'alimentation

FF₂: facteur de forme souhaité.

Moteurs à courant continu MS1 - MS2 Fonctionnement

D2 - Classe d'isolation

Classe d'isolation

Les machines de ce catalogue sont conçues avec un système d'isolation des enroulements en classe F pour les MS1, en classe H pour les MS2.

La classe thermique F autorise des échauffements (par la méthode de variation de résistance) de 105 K et des températures maximales aux points chauds de la machine de 155 °C, la classe thermique H autorise des échauffements (par la méthode de variation de résistance) de 125 K et des températures maximales aux points chauds de la machine de 180 °C (Réf. CEI 85 et CEI 34-1).

L'imprégnation globale dans un vernis tropicalisé de classe thermique 180 °C confère une protection contre les nuisances de l'ambiance : humidité relative de l'air jusqu'à 95 %, parasites, ...

En exécutions spéciales (voir tableau au chapitre "Environnement" page 12), le bobinage est également réalisé en classe H et imprégné avec des vernis sélectionnés permettant le fonctionnement en ambiance à température élevée où l'humidité relative de l'air peut atteindre 100 %.

Échauffement (ΔT^*) et températures maximales des points chauds (T_{max}) selon les classes d'isolation (norme CEI 34 - 1).

	∆ 7*	<i>T</i> max
Classe B	80 K	130°C
Classe F	105 K	155°C
Classe H	125 K	180°C

^{*} Mesure réalisée selon la méthode de la variation de résistance des enroulements.

MS1 - MS2

Fonctionnement

D3 - Puissance - Moment - Rendement

D3.1 - DEFINITIONS

La puissance utile (catalogue) sur l'arbre du moteur est liée au moment par la relation :

$$P_{II} = M . \omega$$

Οľ

 $P_{\rm u}$: puissance utile en W,

M: moment en N.m,

 ω : vitesse angulaire en rad/s.

 ω est fonction de la vitesse de rotation n en min⁻¹:

$$\omega = 2\pi . n / 60$$

La puissance absorbée est liée à la puissance utile par la relation :

$$P = \frac{P_{\rm u}}{n}$$

οù

P : puissance absorbée en W,

 $P_{\rm u}$: puissance utile en W,

 η : rendement de la machine.

La puissance utile sur l'arbre moteur s'exprime en fonction de la tension aux bornes de l'induit et du courant absorbé par la relation

$$P_{II} = U .I. \eta$$

ΟÙ

 P_{II} : puissance utile en W,

U: tension d'induit en V,I: intensité d'induit en A,

 η : rendement de la machine.

D3.2 - CALCUL DU MOMENT ACCELERATEUR ET DU TEMPS DE DEMARRAGE

La mise en vitesse se fera en un temps que l'on peut calculer par la formule simplifiée :

$$t_{\rm d} = \frac{\pi}{30} \times \frac{n.\Sigma J_{\rm n}}{M_{\rm a}}$$
, où

 $t_{\rm d}$: temps de mise en vitesse en secondes; $\Sigma J_{\rm n}$: moment d'inertie en kg.m² de l'ensemble ramené s'il y lieu à la vitesse de l'arbre développant $M_{\rm a}$;

n: vitesse finale en min⁻¹;

 $\emph{M}_{\rm a}$ ou $\emph{M}_{\rm acc}$: moment d'accélération moyen en N.m.

D'une manière générale le moment d'accélération est donné par la formule:

$$M_{\rm a} = M_{\rm m} - M_{\rm R}$$

οù

Ma: moment d'accélération en N.m,

M_m: moment délivré par le moteur en N.m,

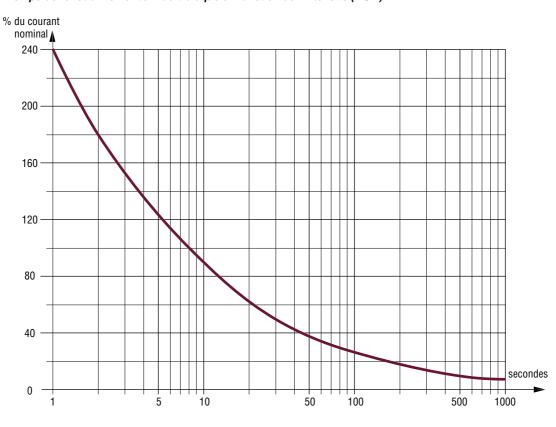
M_R: moment résistant en N.m.

Pour déterminer le temps de démarrage, on

peut aussi utiliser l'abaque 1 (voir page suivante).

Rappelons la formule permettant de ramener le moment d'inertie de la machine entraînée tournant à une vitesse n', à la vitesse n du moteur:

$$J_{n} = J_{n'} \cdot \left(\frac{n'}{n} \right)^{2}$$


D3.3 - TEMPS DE DEMARRA-GE ET TEMPS D'INDUIT BLO-QUE ADMISSIBLES

Le démarrage est géré par le variateur qui comporte une rampe de démarrage réglable la plupart du temps avec une limitation de courant généralement égale à 1,5 fois le courant nominal.

En fonctionnement induit bloqué (uniquement MS 2), peu courant, le système de ventilation doit impérativement rester en fonctionnement. La courbe 1 ci-dessous permet de déterminer le temps d'immobilisation de l'induit en fonction du courant d'induit et réciproquement.

Pour éviter le marquage du collecteur, il est conseillé d'avoir un cycle de rotation après chaque période à induit calé. Nous consulter.

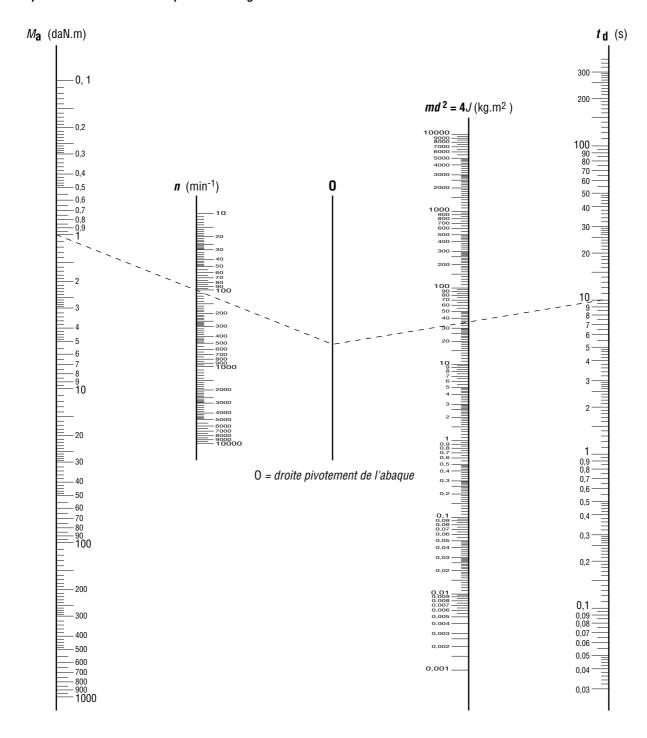
▼ Courbe 1 - Temps de fonctionnement à induit bloqué en fonction de l'intensité (MS 2).

Fonctionnement

Exemple

Une masse dont le moment d'inertie J est de 9 kg.m² est mise en vitesse par un moment accélérateur de 10 N.m jusqu'à une vitesse de 100 min¹.

Joindre le point correspondant au moment accélérateur (1 daN.m sur la première droite)


à celui de la vitesse (100 min⁻¹ sur la deuxième droite), et prolonger jusqu'à la droite 0 de pivotement de l'abaque.

Joindre alors le point d'intersection avec 0 à celui correspondant à la valeur de la troisième droite (*md* ² = 4 x 9 soit 36 kg.m²) et prolonger jusqu'à la droite des temps de démarrage.

Le temps de démarrage $t_{\rm d}$ lu sur l'abaque est:

 $t_{\rm d}$ = 10 secondes.

▼ Abaque de détermination du temps de démarrage

Fonctionnement

D3.4 - DETERMINATION DU MOMENT EN REGIME INTER-MITTENT

Moment moyen en service intermittent

C'est le moment nominal absorbé par la machine entraînée, généralement déterminé par le constructeur.

Si le moment absorbé par la machine est variable au cours d'un cycle, on détermine le moment moyen $M_{\rm m}$ par la relation :

$$M_{m} = \sqrt{\frac{\sum_{1}^{n} (M_{1}^{2} \cdot t_{1})}{\sum_{1}^{n} t_{1}}} = \sqrt{\frac{M_{1}^{2} \cdot t_{1} + M_{2}^{2} \cdot t_{2} \dots + M_{n}^{2} \cdot t_{n}}{t_{1} + t_{2} \dots + t_{n}}}$$

si pendant le temps de marche d'un cycle, les puissances absorbées sont :

$$M_1$$
 pendant le temps t_1
 M_2 pendant le temps t_2
 M_3 pendant le temps t_3

On remplacera les valeurs de moment inférieures à 0.5 $M_{\rm N}$ par 0.5 $M_{\rm N}$ dans le calcul du moment moyen $M_{\rm m}$ (cas particulier des fonctionnements à vide).

Il restera en outre à vérifier que pour le moteur de moment nominal $M_{\rm N}$ choisi :

- \bullet le moment maximal du cycle n'excède pas deux fois le moment $M_{\rm N}.$
- le moment accélérateur reste toujours suffisant pendant la période de démarrage.

Attention: lors du choix du moteur, vérifier que les surcharges dues au cycle de fonctionnement ne dépassent pas les capacités de surcharge indiquées à la page 32. Dans le cas contraire, prendre le moteur de taille supérieure satisfaisant aux capacités de surcharge.

Le courant moyen $I_{\rm m}$ est souvent utilisé à la place du moment; la formule devient:

$$I_{m} = \sqrt{\frac{\sum_{1}^{n} (I_{i}^{2}.t_{i})}{\sum_{1}^{n} I_{i}^{t}}} = \sqrt{\frac{I_{1}^{2}.t_{1} + I_{2}^{2}.t_{2}... + I_{n}^{2}.t_{n}}{t_{1} + t_{2}... + t_{n}}}$$

avec:

$$I_1$$
 pendant le temps t_1
 I_2 pendant le temps t_2
 I_3 pendant le temps t_3

Facteur de charge (FC)

Il s'agit du rapport, exprimé en %, de la durée de fonctionnement en charge pendant le cycle à la durée totale de mise sous tension pendant le cycle.

Facteur de marche (FM)

Il s'agit du rapport, exprimé en %, de la durée de mise sous tension du moteur pendant le cycle à la durée totale du cycle.

Calculs

- Temps de démarrage :

$$t_{\rm d} = \frac{\pi}{30} \times n \times \frac{(J_{\rm e} + J_{\rm i})}{M_{\rm mot} - M_{\rm r}}$$

avec

 $\it t_{\rm d}$: temps de démarrage

n : vitesse de rotation en min⁻¹

 J_{e} : inertie entraînée ramenée à l'arbre

moteur en kg.m²

 J_i : inertie de l'induit en kg.m² M_{mot} : moment du moteur en N.m M_{r} : moment résistant en N.m.

MS1 - MS2

Fonctionnement

D4 - Vitesse - Surcharge

D4.1 - DEFINITIONS

D4.1.1 - Vitesse nominale n

La vitesse nominale *n* s'entend:

- induit et inducteur alimentés sous la tension nominale.
- température moteur stabilisée,
- avec tolérances de la norme CEI (moteur à excitation séparée) égale à:
 ± 15%
- si $P_{ct} < 0.67$
- ± 10%
- si $0.67 \le P_{ct} < 2.5$

P_{ct} est exprimé en kW / 1000 min⁻¹.

Exemple: la puissance requise est de 2 kW à une vitesse de 2000 min⁻¹.

On aura $P_{ct} = 2 \times 1000 / 2000 = 1$ soit $0.67 \le P_{ct} < 2.5$: soit une tolérance de $\pm 10\%$.

D4.1.2 - Vitesse maximale mécanique $n_{\text{max méca}}$

C'est la vitesse maximale admissible de fonctionnement correspondant aux limites mécaniques: elle est de 4000 min⁻¹.

D4.1.3 - Plage de vitesse

C'est la plage comprise entre 0 et la grande vitesse d'utilisation .

D4.1.4 - Plage d'utilisation

C'est la plage comprise entre la petite et la grande vitesse d'utilisation .

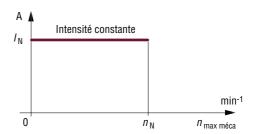
D4.2 - FONCTIONNEMENT

Voir courbes 1 et 2.

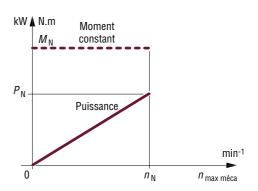
D.4.2.1 - Fonctionnement à moment constant

Cette plage est fonction du mode de contrôle de la vitesse par variation de la tension d'induit à tension d'excitation séparée constante: elle est comprise entre 30 min⁻¹ et la vitesse nominale.

D.4.2.2 - Surintensité


Une surintensité occasionnelle est admissible. La valeur en est donnée par le tableau 1.

D4.3 - CAPACITE DE SURCHARGE


Les moteurs peuvent admettre une surcharge entre 0 et la vitesse nominale de :

- 1.6 fois le courant nominal pendant environ 20 secondes toutes les 5 minutes
- 1.6 fois le courant nominal pendant 1 minute, 3 fois par heure.

Des capacités de surcharge plus réduite sur un temps plus long sont possibles sur demande. ▼ Courbe 1. - Intensité en fonction de la vitesse

▼ Courbe 2. - Puissance en fonction de la vitesse

▼ Tableau 1. - Surcharge admissible en régime établi en fonction du temps (MS 2).

		Nombre de surcharges par		
Surcharge	Durée	20 minutes	100 minutes	
1.6 <i>I</i> _N	1 min	1	5*	
1.2 I _N	2 min	1	5*	
1.1 I _N	4 min	1	5*	
1.05 I _N	10 min	-	1	

^{*:} non consécutives.

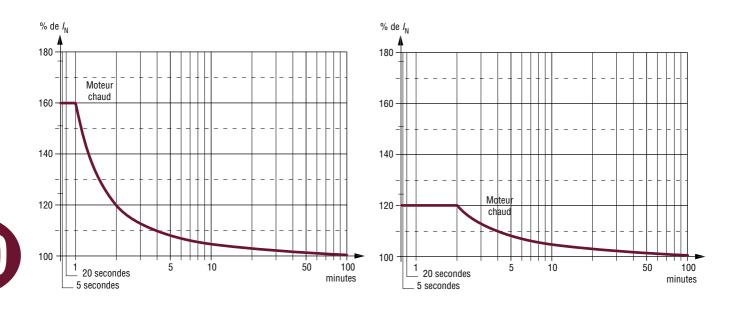
Les courbes 1 & 2 de la page suivante permettent de déterminer les surcharges admissibles en fonction du temps de fonctionnement. Elles définissent un courant de surcharge de courte durée en pourcentage du moment nominal (en service continu) en fonction du temps.

Ces surcharges ne doivent en aucun cas être consécutives.

L'utilisateur pourra s'aider du tableau 1 pour définir le nombre et la durée de la sur-

charge en fonction du temps de cycle de fonctionnement.

Important: en cas de surcharges répétées, celles-ci seront suivies d'un fonctionnement à faible charge de manière à conserver pendant le cycle un courant moyen égal à 100% du courant nominal.



MS1 - MS2

Fonctionnement

▼ Courbe 1. - Surintensité admissible en fonction du temps : vitesse contrôlée par retour DT.

▼ Courbe 2. - Surintensité admissible en fonction du temps : sans retour DT.

Intensité admissible avec rotor à l'arrêt

Ce fonctionnement peu courant nécessite le maintien de la ventilation forcée pendant l'alimentation de la machine.

Consulter la courbe 1 page 28 qui donne le courant admissible en fonction du temps.

D4.4 - VITESSES VARIABLES

Pour des procédés de fabrication nécessitant de nombreux réglages à différentes vitesses ou des productions diverses sur la même machine avec des charges différentes, la variation de vitesse est la réponse idéale.

D4.4.1 - Fonctionnement

Suivant les applications, le moteur peut fonctionner dans 1, 2 ou 4 quadrants: le tableau et le graphe ci-dessous expliquent le fonctionnement du motovariateur en fonction du moment de la charge et de la vitesse de rotation du moteur.

Un variateur qui travaille dans le premier et le troisième quadrant est généralement appelé "unidirectionnel"; celui qui peut travailler dans les quatre quadrants "4Q" est "bidirectionnel".

Le terme régénératif désigne le fait de restituer la puissance sur le réseau d'alimentation.

D4.4.2 - Variateurs

Destinés à l'alimentation du moteur à courant continu à excitation séparée, LEROY-SOMER propose les variateurs suivants :


- DMV 201 unidirectionnel non régénératif, monophasé pont mixte,
- DMV 242 bidirectionnel non régénératif, monophasé double pont complet,
- DMV 2322 unidirectionnel non régénératif, triphasé simple pont complet,
- DMV 2342 bidirectionnel régénératif, triphasé double pont complet.

Les DMV 2322 & 2342, variateurs numériques à commande et régulation gérées par

microprocesseur 8 bits, permettent la programmation par l'utilisateur et le dialogue par touches et afficheurs à 7 segments: réglages de mise en service, maintenance, affichage des codes d'erreur.

De nombreux paramètres (grandeurs physiques, sélections ou valeurs logiques) rangés par 16 menus vérouillés par deux niveaux d'accès, facilitent la mise en service et la maintenance.

Sens de rotation	1 sens	2 sens	1 sens	2 sens
Charge	résistante	résistante	entraînante	entraînante
Fonctionnement	moteur	moteur	moteur + générateur	moteur + générateur
Quadrant	0	0 3	0 2	1234

MS1 - MS2

Fonctionnement

D5 - Bruits et vibrations

D5.1 - NIVEAU DE BRUIT

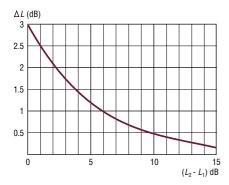
D5.1.1 - Quelques définitions de base

Unité de référence bel, sous multiple le décibel dB, utilisé ci-après.

Niveau de pression acoustique (dB)

$$L_p = 20 \log_{10} \left(\frac{P}{P_0} \right) \text{ avec } P_0 = 2.10^{-5} \text{ Pa}$$

Niveau de puissance acoustique (dB)

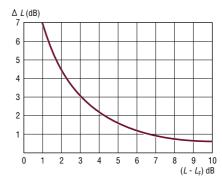

$$L_{\rm W} = 10 \log_{10} \left(\frac{P}{P_0} \right) \text{avec } P_0 = 10^{-12} \,\rm W$$

Niveau d'intensité acoustique (dB)

$$L_{\rm W} = 10 \log_{10} \left(\frac{I}{I_0} \right)$$
 avec $I_0 = 10^{-12} \,{\rm W/m^2}$

D5.1.2 - Corrections des mesures

Pour des écarts de niveaux inférieurs à 10 dB entre 2 sources ou avec le bruit de fond, on peut réaliser des corrections par addition ou soustraction selon les règles suivantes :



▲ Addition de niveaux

 $Si\ L_1$ et L_2 sont les niveaux mesurés séparément ($L_2 \ge L_1$), le niveau acoustique L_R résultant sera obtenu par la relation :

$$L_{\rm R} = L_2 + \Delta L$$

ΔL étant obtenu par la courbe ci-dessus

▲ Soustraction de niveaux*

L'application la plus courante correspond à l'élimination du bruit de fond d'une mesure effectuée en ambiance "bruyante". Si L est le niveau mesuré, L $_{\rm F}$ le niveau du bruit de fond, le niveau acoustique réel L $_{\rm R}$ sera obtenu par la relation :

$$L_{\rm R} = L - \Delta L$$

ΔL étant obtenu par la courbe ci-dessus

*Cette méthode est utilisée pour les mesures classiques de niveau de pression et de puissance acoustique. La méthode de mesure de niveau d'intensité acoustique intègre cette méthode par principe.

Selon la norme CEI 34 - 9, les valeurs garanties sont données pour une machine fonctionnant à vide sous les conditions nominales d'alimentation (CEI 34 - 1), dans la position de fonctionnement prévue en service réel, éventuellement dans le sens de rotation de conception.

Les mesures sont réalisées conformément aux exigences des normes ISO 1680-1 et 1680-2.

Généralement c'est la pression acoustique qui est prise en compte: ses valeurs sont données dans le tableau 1 ci-dessous. Les machines à courant continu travaillant à des régimes différents et des vitesses variables le plus souvent, le niveau de bruit spécifique requis par l'installation fera l'objet d'un accord entre les parties selon la nor-

Exprimés en puissance acoustique (Lw) selon la norme, le niveau sonore des moteurs MS est aussi indiqué en pression acoustique (Lp), cette dernière valeur étant le plus souvent utilisée.

▼ Tableau 1. - Niveaux de bruit pondéré exprimé en dBA

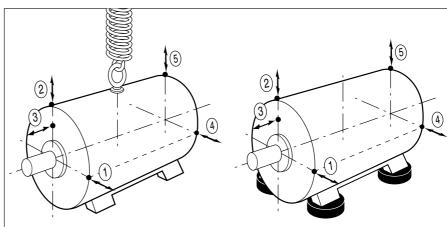
Moteur MS1 - MS2	Puissance $L_{\scriptscriptstyle W}$	Pression <i>L</i> _p	Moteur MS1 - MS2 Taille	Puissance L _w	Pression <i>L</i> _p
801	69	60	1122	79	70
1001	72	63	1321	77	68
1121	76	67	1322	79	70

La tolérance maximale normalisée sur toutes ces valeurs est de + 3 dB(A)

On s'intéressera en première approche aux vibrations émises à la fréquence de rotation, correspondant au balourd mécanique dont l'amplitude est prépondérante sur toutes celles des autres fréquences et pour laquelle l'équilibrage dynamique des masses en rotation a une influence déterminante. Selon la norme ISO 8821, les machines tournantes peuvent être équilibrées avec ou sans clavette ou avec une demi clavette sur le bout d'arbre.

Selon les termes de la norme ISO 8821, le mode d'équilibrage est repéré par un marquage sur le bout d'arbre :

- équilibrage demi clavette : lettre H
- équilibrage clavette entière : lettre F
- équilibrage sans clavette : lettre N.



Moteurs à courant continu

MS1 - MS2

Fonctionnement

Les machines de ce catalogue sont équilibrées dans la classe N - La classes R peut être réalisée sur demande particulière.

▲ Système de mesure machine suspendue

▲ Système de mesure machine sur plots élastiques

Les points de mesure retenus par les normes sont indiqués sur les figures ci-dessus. On rappelle qu'en chacun des points les résultats doivent être inférieurs à ceux indiqués dans les tableaux ci-après en fonction des classes d'équilibrage et seule la plus grande valeur est retenue comme "niveau de vibration".

Valeur maximale de la vitesse efficace de vibration exprimée en mm/s (NFC51 - 111)

Classe	Vitesse n (min-1)	Hauteur d'axe H (mm) H ≤ 132
N (normale)	600 < n ≤ 3 600	1.76
R (réduite)*	600 < n ≤ 1 800 1 800 < n ≤ 3 600	0.70 1.13

^{*:} uniquement avec roulements à billes.

Valeur maximale de l'amplitude simple de déplacement exprimée en μm (pour vibrations sinusoïdales seulement)

Classe	Vitesse	Hauteur d'axe H (mm)
	<i>n</i> (min ⁻¹)	H ≤ 132
	1 000	24
N (normale)	1 500	16
,	3 000	8
	1000	9
R (réduite)	1500	6.3
	3000	5

Nota: pour la classe "S", consulter en précisant l'application.

MS1 - MS2

Fonctionnement

D6 - Optimisation de l'utilisation

D6.1 - PROTECTIONS

Dans le circuit d'alimentation du moteur, il est conseillé de prévoir:

- une protection thermique par intégration de la surcharge (100% du courant d'alimentation);
- une protection instantannée (200% du courant d'alimentation);
- une protection contre le défaut de terre;
- une protection contre les surtensions d'excitation: dans le cas de coupure du circuit d'alimentation de l'excitation, placer une résistance R_p en parallèle sur les bornes

de l'excitation; à titre indicatif:

$$R_{\rm p} = 800 \times U_{\rm exc} / P_{\rm exc}$$

 $R_{\rm p}$ résistance en parallèle en $\Omega,$

 U_{exc} tension d'excitation en V,

 $P_{\rm exc}$ puissance d'excitation en W;

 et une protection contre les survitesses (absence d'excitation, défaut de contrôle vitesse...). Pour diminuer leur temps de réaction, détecter une surcharge instantannée, suivre l'évolution de la température du moteur ou à des points caractéristiques pour la maintenance de l'installation, il est conseillé de prévoir des détections thermiques placées aux points "sensibles". Les types possibles sont décrits dans le tableau ci-dessous.

Les sondes de détection thermique ne constituent pas à elles seules une protection du moteur.

D6.2 - DETECTION THERMIQUE INCORPOREE (MS2 uniquement)

De série, les moteurs MS 1122 & 1322 sont équipés de détection thermique à ouverture PTO. Sur option, ils peuvent être équipés d'autres types de détecteurs (tableau ci-dessous).

Туре	Symbole	Principe du fonctionnement	Courbe de fonctionnement	Pouvoir de coupure	Protection assurée	Nombre d'appareils
Détection thermique à ouverture (fermée au repos)	РТО	bilame à chauffage indirect avec contact à ouverture (0)	T O TNF*	2.5 A sous 250 V à cos φ 0.4	surveillance globale surcharges lentes	2 en série 1 pour pôles principaux 1 pour pôles auxiliaires
Détection thermique à fermeture (ouverte au repos)	PTF	bilame à chauffage indirect avec contact à fermeture (F)	T TNF*	2.5 A sous 250 V à cos φ 0.4	surveillance globale surcharges lentes	2 en parallèle 1 pour pôles principaux 1 pour pôles auxiliaires
Thermistance à coefficient de température positif	СТР	Résistance variable non linéaire à chauffage indirect	R T	0	surveillance globale surcharges rapides arrêt du moteur de ventilatior non respect du sens de rotation du moteur de la ventilation	2 en série 1 pour pôles principaux 1 pour pôles auxiliaires

^{*:} TNF = température nominale de fonctionnement: fonction de l'implantation de la sonde dans le moteur et de la classe d'échauffement.

Raccordement des différentes détections

- PTO ou PTF, dans les circuits de com-
- CTP, associées à un relais hors fourniture; les variateurs LEROY-SOMER DMV 2322

& 2342 incluent l'entrée directe des sondes.

Alarme et déclenchement

Tous les équipements de détection peuvent être doublés (avec des TNF différentes) : le premier équipement servant d'alarme (signaux lumineux ou sonores, sans coupure des circuits de puissance), le second servant de déclenchement (assurant la mise hors tension des circuits de puissance).

MS1 - MS2

Fonctionnement

D7 - Modes de freinage

D7.1 - FREINAGE ELECTRIQUE

Utilisé lorsque l'arrêt naturel d'une machine est trop long dans le cas d'inertie trop importante : par exemple centrifugeuses, cylindres.... Il suffit d'utiliser la réversibilité du moteur à courant continu.

En maintenant l'excitation après coupure de l'alimentation de l'induit, le moteur devient générateur: on dispose alors d'une énergie potentielle aux bornes; cette énergie deviendra nulle à l'arrêt de la machine.

Ce freinage peut être fait de deux manières.

D7.1.1 - Freinage sur résistance

Pour accélérer la disparition de cette énergie, donc le ralentissement jusqu'à l'arrêt, on la consomme en refermant le circuit d'induit sur une résistance.

Ce système n'est pas réglable, le moment n'est pas constant pendant toute la décélération, toute l'énergie est dissipée en chaleur d'où un gaspillage important si les freinages sont nombreux.

Ce freinage n'est donc utilisé que pour un arrêt rapide à l'exclusion d'un freinage de ralentissement. Autre inconvénient, le moment de freinage est nul à l'arrêt.

Ce moyen nécessite l'alimentation de l'excitation pendant la durée complète du freinage.

D.7.1.2 - Freinage par récupération d'énergie

L'alimentation du moteur par un variateur à double pont anti-parallèle (réversible ou 4 quadrants) permet le renvoi au réseau de l'énergie disponible aux bornes du moteur s'il tend à tourner plus vite que ce qui lui est demandé:

- s'il est entraîné par sa charge transitoirement (ralentissement par exemple) ou continuellement (fonctionnement en retenue: dérouleur par exemple);
- s'il doit être arrêté rapidement en contrôle. L'énergie de freinage est restituée au réseau à travers le variateur.

Le freinage peut être ajusté; l'efficacité est constante sur toute la décélération.

Attention: ce freinage devient inexistant en l'absence de la source d'alimentation du variateur. Dans certains cas, il n'exclut pas l'emploi d'un frein mécanique d'arrêt d'urgence: freinage de sécurité par exemple.

D7.2 - OPTION FREINAGE MECANIQUE

Le freinage peut s'opérer le moteur étant en rotation, c'est le freinage dynamique, ou à l'arrêt, c'est le freinage statique. L'énergie dissipée dans le frein sera d'autant plus importante que la vitesse et / ou l'inertie seront élevées.

Pour le calcul d'un frein il y a lieu de tenir compte des éléments suivants:

- masse à freiner (inertie),
- vitesse relative.
- temps de freinage,
- nombre de manœuvres,
- durée de vie.

La température ambiante est aussi à prendre en considération.

D7.2.1 - Définitions

D7.2.1.1 - Charge dynamique

C'est principalement le cas avec le freinage d'inerties en rotation (tambours, rouleaux, etc....) en présence de moment statique négligeable.

D7.2.1.2 - Charge dynamique et statique

C'est le cas de la plupart des applications. Pour simplifier les calculs, une détermination approchée du moment de freinage est possible à partir de la puissance utile:

$$M_{\rm F} = 9550 \cdot P. \, k / n$$

avec

M_F: moment de freinage en N.m

P: puissance utile en kW

k: coefficient de sécurité (de 1 à 3 suivant l'application et les normes en vigueur pour l'utilisation considérée)

n: vitesse de rotation en min⁻¹.

Le moment de freinage doit être supérieur ou égal à la valeur calculée.

D7.2.2 - Paramètres

D7.2.2.1 - Détermination du travail

La friction des matériaux provoque une élévation de température par transformation de l'énergie cinétique. Le travail dissipé est donné par la formule:

$$Q = 5.5 \times 10^{-3}$$
. $\frac{\sum J \cdot n^2 \cdot M_F}{M_F + M_C}$

où
$$\sum J = J_{\text{m}} + J_{\text{F}} + J_{\text{c}}$$

avec:

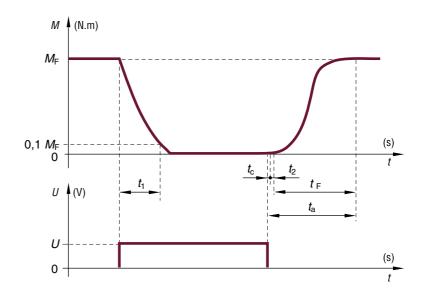
Q: travail dû à la friction en J $\sum J$: somme des inerties en m²kg n: vitesse de rotation en min⁻¹

 $M_{\rm F}$: moment de freinage en N.m

M_c: moment de la charge:

 $M_{\rm c} > 0$ si charge entraînante

 $M_{\rm c}$ < 0 si charge résistante


 $J_{\rm m}$: inertie du moteur en m²kg

 $J_{\rm F}$: inertie du frein en m²kg

 J_c : inertie de la charge en m²kg.

Quand la fréquence de freinage est connue, il est possible de déterminer le travail admissible par manœuvre à l'aide des courbes 2 et 3. A l'inverse la fréquence de freinage possible sera déterminée connaissant le travail dû à la friction.

▼ Courbe 1. - Temps de réponse d'un frein électromagnétique

 $M_{\rm F}$: moment de freinage

 t_1 : temps de réponse au desserrage

t₂ : temps de réponse au serrage

t_a : temps d'arrêt

 $t_{
m c}$: temps de réponse des organes de

commande

 $t_{\rm F}$: temps de freinage U: tension du frein

MS1 - MS2

Fonctionnement

D7.2.2.2 - Réglage et durée de vie

La durée de vie des garnitures est fonction de nombreux paramètres:

- masse à freiner,
- nombre de manœuvres et cycle,
- temps de freinage,
- température ambiante, etc...

Il y a donc lieu en cas de nécessité d'un tel calcul, de connaître avec précision les conditions de fonctionnement.

D7.2.2.3 - Temps d'arrêt et temps de freinage

Le temps d'arrêt est défini par la formule:

$$t_{a} = t_{c} + t_{2} + t_{F}$$

t_a: temps d'arrêt

 $t_{\rm c}$: temps de réponse des organes de commande (contacteurs, fins de course,...)

t₂: temps de réponse au serrage

 $t_{\rm F}$: temps de freinage. Voir courbe 1 page précédente.

Le temps de freinage, ou temps nécessaire au moteur pour passer d'une vitesse n à l'arrêt, est donné par:

$$t_{\rm F} = \frac{\sum J. \omega}{M_{\rm F} + M_{\rm C}}$$

où $\sum J = J_{\text{m}} + J_{\text{F}} + J_{\text{c}}$

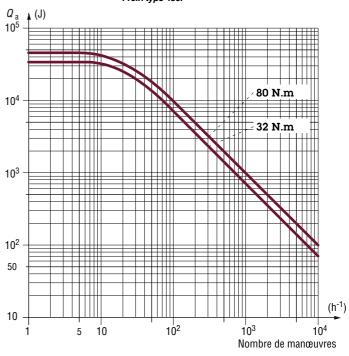
avec

t_F: temps de freinage en s

 $\sum J$: somme des moments d'inertie en $\mathrm{m}^2\mathrm{kg}$

ω: vitesse de rotation angulaire en rad/s

M_F: moment de freinage en N.m


 $M_{\rm c}$: moment dû à la charge en N.m

 $M_{\rm c}$ < 0 si charge entraînante

 $M_c > 0$ si charge résistante

 $J_{\rm m}$: inertie du moteur en m²kg

▼ Courbe 2. - Travail admissible en fonction du nombre de manœuvres: Frein type 450.

 $J_{\rm F}$: inertie du frein en m 2 kg

 $J_{\rm c}$: inertie de la charge en m²kg.

D7.2.3 - Frein type 450 (MS 2)

Pour service normal, maintien du moteur à l'arrêt ou freinage dynamique à faible inertie il est:

- sans réglage d'usure,
- protection IP 54,
- fonctionnement dans toutes les positions,
- alimentation séparée 24 V en courant continu ou redressé, sortie par fils ramenés dans la boîte à borne. Prévoir son alimentation selon la tension indiquée dans le

tableau 1.

Il peut être équipé en option :

- d'un desserrage manuel (par levier type "homme mort"),
- d'une préadaption pour montage dynamo tachymétrique.

Option contact frein desserré

Cette option, réalisable sur devis, nécessite un usinage spécial du frein; il y a donc lieu de le spécifier lors de la demande d'offre.

Nota: le montage d'une dynamo tachymétrique à arbre creux n'est pas conseillé derrière un frein.

▼ Tableau 1. - Caractéristiques électriques et mécaniques des freins (MS 2)

Frein	Moteur				Ca	ractéristiqu	ies			
	MS	J_{F}	M_{F}	n _{s maxi}	P_{F}	t ₁ *	<i>t</i> ₂ *	t _F *	U _F	Masse
type	taille	10 ⁻³ m ² kg	N.m	min ⁻¹	W	ms	ms	ms	V	kg
450	1122	0.45	32	3000	40	120	10	40	24	4
450	1322	1.5	80	3000	55	180	20	70	24	8.4

^{*:} donnés à titre indicatifs, ces temps permettent de ne pas user inutilement les freins par temporisation du démarrage du moteur. Ils peuvent augmenter légèrement en fonction de l'entrefer. Ils tiennent aussi compte de la tension aux bornes de la bobine frein.

 $J_{\rm F}$: inertie du frein

 $M_{\rm F}$: moment de freinage

 $n_{\rm s~maxi}$: vitesse maximale* admissible au serrage.

P_F: puissance de la bobine frein

t₁: temps de réponse au desserrage

t₂: temps de réponse au serrage

 $t_{\rm F}$: temps de freinage

*U*_F: tension d'alimentation (courant continu ou redressé)

*: le freinage au delà de la vitesse $n_{\rm s\ maxi}$

conduit à la destruction des garnitures et à la déformation des parties mécaniques par échauffement excessif.

En cas d'avarie machine ayant nécessité un freinage d'urgence, il est recommandé de procéder à une inspection rigoureuse du frein

^{**:} inclus dans $t_{\rm F}$

MS1 - MS2

Fonctionnement

D8 - Méthode et aide à la sélection

D8.1 - ENVIRONNEMENT

Voir pages 10 à 12.

D8.2 - MOTEUR : PRINCIPE **DE SELECTION**

D8.2.1 - Puissance

Choisir, dans les tables de sélection pages 42 à 45 la taille correspondant à la puissance égale ou immédiatement supérieure à celle requise par la machine.

D8.2.2 - Tension d'induit

La tension secteur impose une tension maximale pour l'alimentation de l'induit conformément à la construction des variateurs. Un tableau (page 26) indique les tensions maximales admissibles en fonction du secteur.

D8.2.3 - Caractéristiques

Lire sur la ligne correspondant à la puissance choisie et à la vitesse relevée les informations recherchées.

Nota: les caractéristiques nominales relevées peuvent être légèrement différentes de celles souhaitées. Il sera aisé de procéder à un ajustement de la tension nominale d'induit d'environ ± 10% avec correction proportionnelle de la vitesse et de la puissance.

D8.2.4 - Corrections

Dans certains cas il y a lieu de calculer la puissance $P_{\rm e}$ utile équivalente :

$$P_e = P/k$$

avec

P: puissance nécessaire à l'entraînement k: facteurs de correction tenant compte de l'utilisation et de l'environnemment quand les conditions de fonctionnement sont différentes de celles utilisées pour définir les valeurs des tables de sélection (voir § 5 Facteurs de correction page suivante).

D8.3 - MOTOVARIATEUR

D8.3.1 - Questionnaire

Pour sélectionner un ensemble motovariateur, il y a lieu de répondre au questionnaire suivant concernant le fonctionnement du moteur:

dans quel(s) quadrant?	page 32
moment constant?	page 28
puissance constante?	page 28
vitesse minimale?	page 31
vitesse maximale?	page 31
 précision de la vitesse? 	pages 49 & 50
• moment maximal?	page 31
• service?	
	\

• tension du réseau d'alimentation? pages 25 à 26 environnement? pages 10 à 12

D8.3.2 - Sélection

Définir le moment moyen en service intermittent ou

le moment équivalant nominal en service continu page 30 Procéder comme pour le moteur seul §2. MOTEUR ci-contre

page 26 Indiquer la tension d'induit, pages 42 à 45 l'indice du moteur, l'intensité nominale, pages 42 à 45 l'excitation, pages 25 & 26 l'intensité maximale, page 32 Indiquer s'il y a lieu les différents accessoires pages 48 à 51

D8.4 - EXEMPLES DE SELECTION

La machine à entraîner requiert une puissance de 0.6 kW à une vitesse nominale de 2500 min⁻¹. La tension du secteur monophasé est de 380 V sous 50 Hz.

Le secteur nous conduit à chercher une tension d'induit de 310 V (page 26). Pour cette tension, la table de sélection page 42 nous donne un MS 801 L 08 - 0.8 kW à 2750 min⁻¹. Remarque:

pour obtenir 2500 min⁻¹ il faudrait alimenter l'induit avec une tension de 310 x 2500 / 2750 soit 282 V obtenue par le réglage du variateur. Le moteur délivrerait alors une puissance de $P = 0.8 \times 2500 / 2750 = 0.72 \text{ kW}.$

Exemple 2:

Il faut un moteur d'une puissance de 9 kW à une vitesse nominale de 1775 min⁻¹. La tension d'induit est de 460 V.

Lire page 45 la vitesse dans la colonne tension d'induit de 460 V. La table de sélection nous indique un MS 1322 M 34 9.2 kW à 1740 min⁻¹.

On ajustera la vitesse par une réduction de la tension d'excitation (ajustage de la tension délivrée par le variateur ou insertion d'une résistance "chutrice" en série avec l'excitation) tout en conservant la puissance.

Il est possible dans le cas d'un entraînement par poulies et courroies de jouer sur le rapport des poulies (1740 / 1775 soit 2%).

Exemple 3:

Puissance d'entraînement de la machine 8 kW à une vitesse nominale de 2400 min⁻¹, pour un service S2 30 minutes. La tension d'induit est de 400 V. La température ambiante de 40°C à 2000 mètres d'altitude.

Calcul de la puissance utile équivalente (§ Corrections): dans le tableau 1 de la page 10, nous relevons sur l'abaque un facteur k de 0.93; page 39 le facteur de correction pour le service est k = 1.3: nous avons donc $P_e = 8 / (1.3 \times 0.93) = 6,6 \text{ kW}$

Nous recherchons donc dans les tables de sélection le moteur le plus proche: c'est un MS 1122 M05, 6.9 kW à 2480 min⁻¹ (page 43).

MS1 - MS2

Fonctionnement

La puissance réelle sera de

 $P = 6.9 \times 1.3 \times 0.93 = 8.34 \text{ kW}$

Le moteur MS 1122 M05, $6.9 \, \text{kW}$, IC 06, $2480 \, \text{min}^{-1}$ sera utilisé à $8 \, \text{kW}$, en service S2 $30 \, \text{minutes}$.

Exemple 4:

Il s'agit de motoriser un ensemble à vitesse variable:

fonctionnementmoment constant?quadrantsoui: 48N.m

• puissance constante? non: 11 kW, plage 1 à 1.2

vitesse minimale?
vitesse maximale?
2700 min⁻¹ *

• précision de la vitesse? $< 1\% n_N$: implique dynamo tachymétrique

• moment maximal? $1.6 \times M_{\rm N}$ • service? S1

réseau? tri 50 Hz, 380 V
 ambiance? < 40°C, air propre

Le moment nous conduit à un MS 1322 M33, 11,7 kW pour 50 N.m (page 44). Le courant nominal de ce moteur est de 32 A; le courant d'utilisation sera de:

$$I = 32 \times 48 / 50 = 30.7 \text{ A}$$

Le fonctionnement en 4 quadrants (réversibilité), nous impose un variateur du type DMV 2342, le courant induit impose un calibre 45 (voir documentation DMV).

Le courant maxi dans le variateur sera de:

$$I_{\text{max var}} = 30.7 \text{ x } 1.6 = 49.2 \text{ A}$$

Le courant maxi admissible au variateur est de $45 \times 1.5 = 67.5 \text{ A}$: le variateur **DMV 2342-45** convient donc.

Le moteur pourra admettre la surcharge 1.6 $I_{\rm N}$ pendant 60 secondes (§3 capacités de surcharge pages 31 & 32).

Vérifications

Dans le cas de déclassement il y a lieu de vérifier que le moteur sélectionné satisfait bien aux conditions d'utilisation et à ses caractéristiques.

*: rappel: 2700 / 1.2 = 2250 min ⁻¹ équivalent à 2240 min ⁻¹ la vitesse nominale du moteur, 1.2 coefficient de vitesse maximale de la plage.

D8.5 - FACTEURS DE COR-RECTION

D8.5.1 - Correction en fonction de l'altitude et de la température ambiante

Avec des valeurs de température ambiante et d'altitude différentes, multiplier la puissance utile par le coefficient correcteur correspondant aux caractéristiques ambiantes: le facteur de correction est lu sur les courbes de la page 20.

D8.5.2 - Correction en fonction du service (MS 2)

Pour des services S2, S3 & S6 suivant CEI 34-1, la puissance nominale des tables de sélection est à multiplier par le facteur du tableau 1 sans dépasser 1.6 pour le rapport moment de démarrage / moment nominal.

▼ Tableau 1. - Facteur de correction en fonction du service (MS 2)

Service		Temps d	e marche	
type	10 min	30 min	60 min	90 min
S2: service temporaire	1.6	1.3	1.1	1
Service			e marche	
type	15%	25%	40%	60%
S3: service intermittent périodique	1.6	1.4	1.2	1.1
S6: service ininterrompu périodique à charge intermittente	1.6	1.4	1.3	1.2

Moteurs à courant continu MS1 - MS2

Organisation de la disponibilité

E0 - Disponibilité en fonction de la construction

Les indices **D**, **P** et **C** du tableau ci-contre donnent une indication sur la disponibilité des moteurs MS :

: Moteurs issus d'un "centre de montage rapide", avec délai départ usine 10 jours ouvrables.

Avec en option (pour certains pays):

- Produit rendu client 24 heures garanties à partir de la date d'expédition.
- : Moteurs réalisables dans un délai court, mais devant être confirmé.
- : Moteurs réalisables sur devis, avec délai à convenir.

Le délai est fonction de l'association :

- des caractéristiques électriques : puissance,
 - vitesse,
 - · tension d'induit.

***/**/*

(Les étoiles figurent dans les tables de sélection)

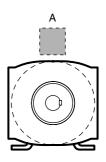
- des caractéristiques mécaniques et de la tension des inducteurs

La correspondance des caractéristiques mécaniques est indiquée par le tableau suivant:

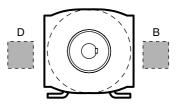
Référence	Caractéristiques de construction
p. 13	Protection IP 20 ou 23
p. 20	 Ventilation forcée position B ou D (MS2)
p. 13	Fixation à pattes ou à bride
p. 20	Boîte à bornes position A
p. 46-47	Bout d'arbre principal standard
p. 15	Roulements à billes étanches
p. 34	Equilibrage classe normale N
p. 48	Détecteur d'arrêt de flux d'air (MS2)
p. 49	• Support et accouplement pour montage de dyna-
	mo tachymétrique (DT) REO ou similaire
p. 49	Fourniture et montage de DT standard
p. 48	• Filtre (MS2)
p. 25	• Excitation séparée, tension 190 V
p. 35	Détection thermique PTO (MS2 uniquement)
■ ■ (MS2)	
p. 25	Excitation 210 V*
p. 34	Equilibrage classe réduite R
p. 35	Détection thermique CTP
■ (MS2)	
, ,	Bout d'arbre spécial sur devis
p. 51	Option 2 ème arbre
p. 37 & 51	Option frein
p. 49	Option frein avec dynamo tachy. ou G.I.
p. 47	Bride spéciale
•	• Exécution autre que CEI

^{*:} pour autres tensions d'excitation, nous consulter.

Tableau indicatif des délais


Caractéristiques	Carao	ctéristiques électri	iques
mécaniques	***	**	*
	D	P	C
••	P	P	C
•	C	C	C

Nota: la série MS1 est réalisée uniquement en



Rappel des positions de la ventilation forcée ou de la boîte à bornes par rapport au moteur (vu bout d'arbre)

Boîte à bornes

Ventilation forcée (MS2)

Exemple

Un moteur MS 1322 M34, 9.2 kW à 1740 min⁻¹ avec tension d'induit 460 V (★ ★), excitation 190 V, fixation à pattes avec ventilation position D et boîte à bornes position A, filtre et dynamo tachymétrique (■ ■ ■) sera livrable en catégorie P.

Nota: les moteurs exécutables suivant cahier des charges client sont livrables en catégorie C.

Moteurs à courant continu MS1 - MS2 Caractéristiques électriques

ABREVIATION UTILISEES DANS LES TABLES DE SELECTION

Toutes les tables de sélection (pages 42 à 45) utilisent la même symbolique pour les caractéristiques électriques et mécaniques. Les abréviations utilisées dans ces tables sont explicitées ci-après.

Conditions de validité des caractéristiques données dans les tables de sélection

Les tables de sélection sont établies pour:

- degré de protection IP 20 ou 23: voir page13
- mode de refroidissement IC 01 (auto-ventilé) pour MS 801, 1001, 1121 & 1321: voir page 19
- mode de refroidissement IC 06 (V.F.) pour MS 1122 & 1322: voir page 19
- service continu S1 suivant CEI 34-1
- température ambiante ≤ 40°C: voir page 10
- altitude inférieure ou égale à 1000 m: voir page 10
- alimentation monophasée redressée par pont mixte ou
- alimentation triphasée redressée par pont complet (facteur de forme inférieur ou égal à 1,04)
- classe d'isolation F pour MS 801, 1001, 1121 & 1321: voir page 27
- classe d'isolation H pour MS 1122 & 1322: voir page 27

Les moteurs sont prévus pour fonctionner dans une plage de courant de 50 à 100% de I_N en régime permanent et au-delà en régime transitoire: voir capacité de surcharge pages 31 & 32.

Nota: pour un fonctionnement en sous charge et en période prolongée, nous consulter.

Abréviations utilisées dans les têtières des tables de sélection

P : puissance nominale exprimée en kW

n : vitesse nominale pour la tension d'induit indiquée dans la têtière, moteur chaud, exprimée en min⁻¹

U : tension d'induit (voir page 26) exprimée en V

 $n_{
m maxi\ méca.}$: vitesse maximale mécanique exprimée en min-1: voir tableau 1 page

M : moment nominal exprimé en N.m

I : intensité admissible en régime permanent exprimée en A (service S1)

 η : rendement (ne tient pas compte de l'excitation) L : self du circuit d'induit exprimée en mH

R: résistance du circuit d'induit exprimée en Ω

 $U_{
m max}$: tension maximale admissible aux bornes de l'induit exprimée en V

La : valeur de la self additionnelle pour obtenir la puissance inscrite dans la première colonne exprimée en mH: voir page 26.

Nota: les puissances d'excitation données sont des puissances moyennes.

Désignation des moteurs : voir rabat de couverture

Délai: *, * *, * *: voir page 40

Remarques

Le lecteur pourra se reporter aux pages 38 & 39 pour la procédure et les exemples de sélection. Les facteurs de correction en fonction de l'utilisation et des options sont indiqués page 39.

La valeur du moment indiquée en tête de page, est la valeur moyenne pour chaque taille de moteur.

Moteur à courant continu MS 801 à 1321

Caractéristiques électriques

E1 - Table de sélection : MS1

Les caractéristiques électriques sont données pour:

- alimentation en monophasé pont mixte ou en triphasé pont complet
- degré de protection IP 20
- mode de refroidissement IC 01 (autoventilé)
- service continu S1
- température ambiante ≤ 40°C.

Puissance d'excitation

Taille moteur	W
801	65
1001	80
1121	130
1321 S	140
1321 M	190

Délai

n_{max méca}: 4000 min⁻¹
Lexique des abréviations: voir page 41.

	P	Р	Ré	seau monoph	ıasé	Réseau triphasé	Self	Moteur	Désignation	J	М	1	η	L	R _{115°}	$U_{\rm max}$
No. No.	avec self	sans self		•					-			sans self			110	IIIQA
0.5	*		170 V	260 V	310 V	440 V	FF = 1.2*	taille	& indice			FF = 1.6*				
0.7	kW	kW	min ⁻¹	min ⁻¹	min ⁻¹	min ⁻¹	mH			kg.m ²	N.m	A		mH	Ω	V
0.8	0,5	0,44	1500				30	801	L 08	0,003	3	3,5	0,74	94	5,5	440
0,92 0,8	0,7	0,6	995				50	1001	L 09	0,006	6	4,4	0,81	130	5,1	310
1,03 0,9	0,8	0,7		2300			30	801	L 08	0,003	3	3,5	0,77	94	5,5	420
10,000 1	0,92	0,8			2750	- ·	30	801	L 08	0,003	3	3,5	0,74	94	5,5	420
1,1	1,03	0,9		1530	-		50	1001	L 09	0,006	6	4,4	0,79	130	5,1	310
1.26	1,07	0,93	3000		-		10	801	L 04	0,003	3	7	0,79	23	1,35	170
1.26	1,1	0,93	1500				20	1001	L 06	0,006	6	6,5	0,84	57	2,35	420
1,2	1,26	1,1	1800				15	1001	L 05	0,006	6	7,5	0,86	43	1,75	310
1,5	1,26	1,1			1830		50	1001	L 09	0,006	6	4,4	0,81	130	5,1	310
1,61		1,2		_	-	3870		801	L 08	0,003	3	3,5	0,79	94	5,5	440
1.96 1,7 2750 15 1001 L 05 0,006 6 7,5 0,87 43 1,75 31 1,96 1,7 2740 20 1001 L 06 0,006 6 6,5 0,85 57 2,35 42 2,13 1,85 3000 5 1001 L 03 0,006 6 12,5 0,87 15 0,5 17 2,3 2 1400 30 1121 M 04 0,02 14 13,5 0,87 34 1,26 42 2,3 2 1400 3870 1001 L 05 0,006 6 7,5 0,86 80 3,01 15 101 L 06 0,006 6 6,5 0,85 57 2,25 44 2,41 3870 1001 L 06 0,006 6 6,5 0,85 57 2,35 44 2,76 2,4 950 2 1321 M	1,5	1,3	900	_			30	1121	M 06	0,02	14	9	0,85	80	3,01	420
1,96	1,61	1,4		2300			20	1001	L 06	0,006	6	6,5	0,83	57	2,35	420
2,13 1,85 3000 5 1001 L 03 0,066 6 12,5 0,87 15 0,5 17 2,3 2 1400 10 1121 M 04 0,02 14 13,5 0,87 34 1,26 42 2,3 2 1400 30 1121 M 06 0,02 14 9 0,86 80 3,01 42 2,3 2 3300 15 1001 L 05 0,006 6 7,5 0,86 43 1,75 31 2,41 3870 1001 L 06 0,006 6 6,5 0,85 57 2,35 44 2,76 2,4 950 20 1321 833 0,04 18 16,5 0,86 37 1,14 42 2,82 2,45 950 20 1321 M 33 0,05 24 17 0,83 54 1,32 42 2,82	1,96	1,7		2750			15	1001	L 05	0,006	6	7,5	0,87	43	1,75	310
2,3 2 1400 10 1121 M 04 0,02 14 13,5 0,87 34 1,26 42 2,3 2 1400 30 1121 M 06 0,02 14 9 0,86 80 3,01 42 2,3 2 3300 15 1001 L 05 0,006 6 7,5 0,86 43 1,75 31 2,41 3870 1001 L 06 0,006 6 6,5 0,85 57 2,35 44 2,76 2,4 1300 15 1321 S 33 0,04 18 16,5 0,86 37 1,14 42 2,76 2,4 950 20 1321 M 33 0,05 24 17 0,83 54 1,32 42 2,82 2,6 1850 5 1121 M 03 0,02 14 9 0,87 80 3,01 44 2,82	1,96	1,7		_	2740		20	1001	L 06	0,006	6	6,5	0,85	57	2,35	420
2,3 2 1400 30 1121 M 06 0,02 14 9 0,86 80 3,01 42 2,3 2 3300 15 1001 L 05 0,006 6 7,5 0,86 43 1,75 31 2,41 3870 1001 L 06 0,006 6 6,5 0,85 57 2,35 44 2,76 2,4 1300 15 1321 S 33 0,04 18 16,5 0,86 37 1,14 42 2,76 2,4 950 20 1321 M 33 0,05 24 17 0,83 54 1,32 42 2,82 2,6 1850 5 1121 M 06 0,02 14 9 0,87 80 3,01 42 2,82 2,6 1850 5 1121 M 03 0,02 14 9 0,87 80 3,01 42 2,82	2,13	1,85	3000				5	1001	L 03	0,006	6	12,5	0,87	15	0,5	170
2,3 2 3300 15 1001 L 05 0,006 6 7,5 0,86 43 1,75 31 2,41 3870 1001 L 06 0,006 6 6,5 0,85 57 2,35 44 2,76 2,4 1300 15 1321 S 33 0,04 18 16,5 0,86 37 1,14 42 2,76 2,4 950 20 1321 M 33 0,05 24 17 0,83 54 1,32 42 2,82 2,45 1700 30 1121 M 06 0,02 14 9 0,87 80 3,01 42 2,82 2,6 1850 5 1121 M 03 0,02 13 18 0,85 20 0,8 31 3,57 3,1 2150 10 1121 M 04 0,02 14 13,5 0,88 34 1,26 42 4,26 </td <td>2,3</td> <td>2</td> <td>1400</td> <td></td> <td></td> <td></td> <td>10</td> <td>1121</td> <td>M 04</td> <td>0,02</td> <td>14</td> <td>13,5</td> <td>0,87</td> <td>34</td> <td>1,26</td> <td>420</td>	2,3	2	1400				10	1121	M 04	0,02	14	13,5	0,87	34	1,26	420
2,41 3870 1001 L 06 0,006 6 6,5 0,85 57 2,35 44 2,76 2,4 1300 15 1321 S 33 0,04 18 16,5 0,86 37 1,14 42 2,76 2,4 950 20 1321 M 33 0,05 24 17 0,83 54 1,32 42 2,82 2,45 1700 30 1121 M 06 0,02 14 9 0,87 80 3,01 42 2,82 2,6 1850 5 1121 M 03 0,02 13 18 0,85 20 0,8 31 3,57 3,1 2150 10 1121 M 04 0,02 14 13,5 0,88 34 1,26 42 4,26 3,7 2000 10 1321 S 33 0,04 18 16,5 0,86 37 1,14 42 4,	2,3	2		1400			30	1121	M 06	0,02	14	9	0,86	80	3,01	420
2,76 2,4 1300 15 1321 S 33 0,04 18 16,5 0,86 37 1,14 42 2,76 2,4 950 20 1321 M 33 0,05 24 17 0,83 54 1,32 42 2,82 2,45 1700 30 1121 M 06 0,02 14 9 0,87 80 3,01 42 2,82 2,6 1850 5 1121 M 03 0,02 13 18 0,85 20 0,8 31 3,57 3,1 2150 10 1121 M 04 0,02 14 13,5 0,88 34 1,26 42 4,26 3,7 2000 10 1321 S 33 0,04 18 16,5 0,86 37 1,14 42 4,31 3,75 2000 10 1321 M 04 0,02 14 13,5 0,88 34 1,26 <t< td=""><td>2,3</td><td>2</td><td></td><td></td><td>3300</td><td></td><td>15</td><td>1001</td><td>L 05</td><td>0,006</td><td>6</td><td>7,5</td><td>0,86</td><td>43</td><td>1,75</td><td>310</td></t<>	2,3	2			3300		15	1001	L 05	0,006	6	7,5	0,86	43	1,75	310
2,76 2,4 950 20 1321 M 33 0,05 24 17 0,83 54 1,32 42 2,82 2,45 1700 30 1121 M 06 0,02 14 9 0,87 80 3,01 42 2,82 2,6 1850 5 1121 M 03 0,02 13 18 0,85 20 0,8 31 3,57 3,1 2150 10 1121 M 04 0,02 14 13,5 0,88 34 1,26 42 4,26 3,7 2000 10 1321 S 33 0,04 18 16,5 0,86 37 1,14 42 4,31 3,75 2600 10 1121 M 04 0,02 14 13,5 0,88 34 1,26 42 4,49 3,9 1450 20 1321 M 33 0,05 26 17 0,88 54 1,32		2,41				3870		1001	L 06	0,006	6	6,5	0,85	57	2,35	440
2,82 2,45 1700 30 1121 M 06 0,02 14 9 0,87 80 3,01 42 2,82 2,6 1850 5 1121 M 03 0,02 13 18 0,85 20 0,8 31 3,57 3,1 2150 10 1121 M 04 0,02 14 13,5 0,88 34 1,26 42 3,46 2410 1121 M 06 0,02 14 9 0,87 80 3,01 44 4,26 3,7 2000 10 1321 S 33 0,04 18 16,5 0,86 37 1,14 42 4,31 3,75 2600 10 1121 M 04 0,02 14 13,5 0,88 34 1,26 42 4,49 3,9 1450 20 1321 M 33 0,05 26 17 0,88 54 1,32 42 4,	2,76	2,4	1300				15	1321	S 33	0,04	18	16,5	0,86	37	1,14	420
2,82 2,6 1850 5 1121 M 03 0,02 13 18 0,85 20 0,8 31 3,57 3,1 2150 10 1121 M 04 0,02 14 13,5 0,88 34 1,26 42 3,46 2410 1121 M 06 0,02 14 9 0,87 80 3,01 44 4,26 3,7 2000 10 1321 S 33 0,04 18 16,5 0,86 37 1,14 42 4,31 3,75 2600 10 1121 M 04 0,02 14 13,5 0,88 34 1,26 42 4,49 3,9 1450 20 1321 M 33 0,05 26 17 0,88 54 1,32 42 4,6 4 2900 3 1121 M 02 0,02 13 28 0,84 9 0,34 17 4,6 <td>2,76</td> <td>2,4</td> <td>950</td> <td></td> <td></td> <td></td> <td>20</td> <td>1321</td> <td>M 33</td> <td>0,05</td> <td>24</td> <td>17</td> <td>0,83</td> <td>54</td> <td>1,32</td> <td>420</td>	2,76	2,4	950				20	1321	M 33	0,05	24	17	0,83	54	1,32	420
3,57 3,1 2150 10 1121 M 04 0,02 14 13,5 0,88 34 1,26 42 3,46 2410 1121 M 06 0,02 14 9 0,87 80 3,01 44 4,26 3,7 2000 10 1321 S 33 0,04 18 16,5 0,86 37 1,14 42 4,31 3,75 2600 10 1121 M 04 0,02 14 13,5 0,88 34 1,26 42 4,49 3,9 1450 20 1321 M 33 0,05 26 17 0,88 54 1,32 42 4,6 4 2900 3 1121 M 02 0,02 13 28 0,84 9 0,34 17 4,6 4 2900 5 1121 M 03 0,02 14 18 0,86 20 0,8 31 5 4,35 2350 10 1321 S 33 0,04 18 16,5 0,85 <td>2,82</td> <td>2,45</td> <td></td> <td></td> <td>1700</td> <td></td> <td>30</td> <td>1121</td> <td>M 06</td> <td>0,02</td> <td>14</td> <td>9</td> <td>0,87</td> <td>80</td> <td>3,01</td> <td>420</td>	2,82	2,45			1700		30	1121	M 06	0,02	14	9	0,87	80	3,01	420
3,46 2410 1121 M 06 0,02 14 9 0,87 80 3,01 44 4,26 3,7 2000 10 1321 S 33 0,04 18 16,5 0,86 37 1,14 42 4,31 3,75 2600 10 1121 M 04 0,02 14 13,5 0,88 34 1,26 42 4,49 3,9 1450 20 1321 M 33 0,05 26 17 0,88 54 1,32 42 4,6 4 2900 3 1121 M 02 0,02 13 28 0,84 9 0,34 17 4,6 4 2900 5 1121 M 03 0,02 14 18 0,86 20 0,8 31 5 4,35 2350 10 1321 S 33 0,04 18 16,5 0,85 37 1,14 42 5,29 4,6 1800 20 1321 M 33 0,05 24 17 0,87	2,82	2,6	1850				5	1121	M 03	0,02	13	18	0,85	20	0,8	310
4,26 3,7 2000 10 1321 S 33 0,04 18 16,5 0,86 37 1,14 42 4,31 3,75 2600 10 1121 M 04 0,02 14 13,5 0,88 34 1,26 42 4,49 3,9 1450 20 1321 M 33 0,05 26 17 0,88 54 1,32 42 4,6 4 2900 3 1121 M 02 0,02 13 28 0,84 9 0,34 17 4,6 4 2900 5 1121 M 03 0,02 14 18 0,86 20 0,8 31 5 4,35 2350 10 1321 S 33 0,04 18 16,5 0,85 37 1,14 42 5,29 4,6 1800 20 1321 M 33 0,05 24 17 0,87 54 1,32 42 5,64 4,9 3400 5 1121 M 03 0,02 14	3,57	3,1		2150			10	1121	M 04	0,02	14	13,5	0,88	34	1,26	420
4,31 3,75 2600 10 1121 M 04 0,02 14 13,5 0,88 34 1,26 42 4,49 3,9 1450 20 1321 M 33 0,05 26 17 0,88 54 1,32 42 4,6 4 2900 3 1121 M 02 0,02 13 28 0,84 9 0,34 17 4,6 4 2800 5 1121 M 03 0,02 14 18 0,86 20 0,8 31 5 4,35 2350 10 1321 S 33 0,04 18 16,5 0,85 37 1,14 42 5,29 4,6 1800 20 1321 M 33 0,05 24 17 0,87 54 1,32 42 5,64 4,9 3400 5 1121 M 03 0,02 14 18 0,83 20 0,8 31 5,24 3670 1121 M 04 0,02 14 13,5 0,88		3,46				2410		1121	M 06	0,02	14	9	0,87	80	3,01	440
4,49 3,9 1450 20 1321 M 33 0,05 26 17 0,88 54 1,32 42 4,6 4 2900 3 1121 M 02 0,02 13 28 0,84 9 0,34 17 4,6 4 2800 5 1121 M 03 0,02 14 18 0,86 20 0,8 31 5 4,35 2350 10 1321 S 33 0,04 18 16,5 0,85 37 1,14 42 5,29 4,6 1800 20 1321 M 33 0,05 24 17 0,87 54 1,32 42 5,64 4,9 3400 5 1121 M 03 0,02 14 18 0,83 20 0,8 31 5,24 3670 1121 M 04 0,02 14 13,5 0,88 34 1,26 44 6,18 3350 1321 S 33 0,04 18 16,5 0,88 37 1,14	4,26	3,7		2000			10	1321	S 33	0,04	18	16,5	0,86	37	1,14	420
4,6 4 2900 3 1121 M 02 0,02 13 28 0,84 9 0,34 17 4,6 4 2800 5 1121 M 03 0,02 14 18 0,86 20 0,8 31 5 4,35 2350 10 1321 S 33 0,04 18 16,5 0,85 37 1,14 42 5,29 4,6 1800 20 1321 M 33 0,05 24 17 0,87 54 1,32 42 5,64 4,9 3400 5 1121 M 03 0,02 14 18 0,83 20 0,8 31 5,24 3670 1121 M 04 0,02 14 13,5 0,88 34 1,26 44 6,18 3350 1321 S 33 0,04 18 16,5 0,85 37 1,14 44 6,9 6 2250 3 1321 M 22 0,05 25 40 0,88 11 0,34	4,31	3,75			2600		10	1121	M 04	0,02	14	13,5	0,88	34	1,26	420
4,6 4 2800 5 1121 M 03 0,02 14 18 0,86 20 0,8 31 5 4,35 2350 10 1321 S 33 0,04 18 16,5 0,85 37 1,14 42 5,29 4,6 1800 20 1321 M 33 0,05 24 17 0,87 54 1,32 42 5,64 4,9 3400 5 1121 M 03 0,02 14 18 0,83 20 0,8 31 5,24 3670 1121 M 04 0,02 14 13,5 0,88 34 1,26 44 6,18 3350 1321 S 33 0,04 18 16,5 0,85 37 1,14 44 6,9 6 2250 3 1321 M 22 0,05 25 40 0,88 11 0,34 26	4,49	3,9		1450			20	1321	M 33	0,05	26	17	0,88	54	1,32	420
5 4,35 2350 10 1321 S 33 0,04 18 16,5 0,85 37 1,14 42 5,29 4,6 1800 20 1321 M 33 0,05 24 17 0,87 54 1,32 42 5,64 4,9 3400 5 1121 M 03 0,02 14 18 0,83 20 0,8 31 5,24 3670 1121 M 04 0,02 14 13,5 0,88 34 1,26 44 6,18 3350 1321 S 33 0,04 18 16,5 0,85 37 1,14 44 6,9 6 2250 3 1321 M 22 0,05 25 40 0,88 11 0,34 26	4,6	4	2900				3	1121	M 02	0,02	13	28	0,84	9	0,34	170
5,29 4,6 1800 20 1321 M 33 0,05 24 17 0,87 54 1,32 42 5,64 4,9 3400 5 1121 M 03 0,02 14 18 0,83 20 0,8 31 5,24 3670 1121 M 04 0,02 14 13,5 0,88 34 1,26 44 6,18 3350 1321 S 33 0,04 18 16,5 0,85 37 1,14 44 6,9 6 2250 3 1321 M 22 0,05 25 40 0,88 11 0,34 26	4,6	4		2800			5	1121	M 03	0,02	14	18	0,86	20	0,8	310
5,64 4,9 3400 5 1121 M 03 0,02 14 18 0,83 20 0,8 31 5,24 3670 1121 M 04 0,02 14 13,5 0,88 34 1,26 44 6,18 3350 1321 S 33 0,04 18 16,5 0,85 37 1,14 44 6,9 6 2250 3 1321 M 22 0,05 25 40 0,88 11 0,34 26	5	4,35			2350		10	1321	S 33	0,04	18	16,5	0,85	37	1,14	420
5,24 3670 1121 M 04 0,02 14 13,5 0,88 34 1,26 44 6,18 3350 1321 S 33 0,04 18 16,5 0,85 37 1,14 44 6,9 6 2250 3 1321 M 22 0,05 25 40 0,88 11 0,34 26	5,29	4,6			1800		20	1321	M 33	0,05	24	17	0,87	54	1,32	420
6,18 3350 1321 S 33 0,04 18 16,5 0,85 37 1,14 44 6,9 6 2250 3 1321 M 22 0,05 25 40 0,88 11 0,34 26	5,64	4,9			3400		5	1121	M 03	0,02	14	18	0,83	20	0,8	310
6,9 6 2250 3 1321 M 22 0,05 25 40 0,88 11 0,34 26		5,24				3670		1121	M 04	0,02	14	13,5	0,88	34	1,26	440
		6,18				3350		1321	S 33	0,04	18	16,5	0,85	37	1,14	440
6,7 2510 1321 M 33 0,05 25 17 0,89 54 1,32 44	6,9	6	2250				3	1321	M 22	0,05	25	40	0,88	11	0,34	260
		6,7				2510		1321	M 33	0,05	25	17	0,89	54	1,32	440
10,2 8,85 3300 3 1321 M 22 0,05 26 40 0,85 11 0,34 26	10,2	8,85		3300			3	1321	M 22	0,05	26	40	0,85	11	0,34	260

^{*:} pour alimentation en monophasé.

Moteurs à courant continu MS 1122 M

Caractéristiques électriques

E2 - Tables de sélection : MS2

Les caractéristiques électriques sont données pour:

- alimentation en monophasé pont mixte ou en triphasé pont complet
- degré de protection IP 23
- mode de refroidissement IC 06 (V.F.)
- service continu S1
- température ambiante ≤ 40°C.

Masse: moteur à pattes: 56 kg

Masse: moteur à bride: 59 kg

Moment d'inertie: 0.02 kg.m²

Puissance d'excitation: 0.25 kW

23 N.m

 $n_{\text{max méca}}$: 4000 min⁻¹

Lexique des abréviations: voir page 41.

				Réseau m	•			seau triph	asé	Self								
FF 4.0F	Р		400 1/			n n pour			400.1/	addition.	М	1	η	L	R _{115°}	$U_{\rm max}$	la dia a	D/I-:
FF=1.05 kW	avec self kW	sans self kW	160 V min ⁻¹	180 V min ⁻¹	260 V min ⁻¹	310 V min ⁻¹	400 V min ⁻¹	440 V min ⁻¹	460 V min ⁻¹	FF=1.2 mH	N.m	Α	Hors excit.	mH	Ω	V	Indice	Délai
1,9	KVV	- KVV		1111111			890				20	6.5▲	0,72	430	16,5	460		
2,1								970			21	6.4▲	0,72	430	16,5	460		ملدملد
2,2									1000	·	21	6.4▲	0,73	430	16,5	460	. 14	**
3,4							1380				24	10.3▲	0,81	171	6,63	460		
3,7	-	-	-	-	-			1500			24	10.3▲	0,82	171	6,63	460	09	**
3,8	-								1570		23	10▲	0,82	171	6,63	460		
	1,4	1,2	630							30	21	10.5*	0,7	110	3,82	460		
	1,5	1,3		720				-		30	20	10*	0,73	110	3,82	460	-	
	2,2	1,9			1080					30	19	9.5*	0,78	110	3,82	460		
	2,8	2,4				1320				30	20	9.5*	0,81	110	3,82	460	07	**
4,7							1760		•		26	14▲	0,83	110	3,82	460	-	
5,3			-		-			1940	•		26	14▲	0,85	110	3,82	460		
5,3					-				2020		25	13.5▲	0,86	110	3,82	460		
	1,7	1,5	730							25	22	11.5*	0,73	90	3,01	460		
	1,9	1,6		830						25	22	11*	0,78	90	3,01	460		
	2,7	2,3			1260					25	20	11*	0,81	90	3,01	460		.11.
	3,2	2,8				1530				25	20	11*	0,83	90	3,01	460	06	**
5,5							2060				25	16▲	0,86	90	3,01	460		
6,1								2270			26	16▲	0,86	90	3,01	460		
6,2									2370		25	15.5▲	0,87	90	3,01	460		
	2,3	2	880							15	25	14.5*	0,78	62	1,97	460		
	2,3	2		1000						15	22	14*	0,8	62	1,97	460		
	3,5	3			1520					15	22	13.6*	0,84	62	1,97	460		مادماد
	4,2	3,6				1840				15	22	13.6*	0,85	62	1,97	460	05	**
6,9							2480				27	20▲	0,86	62	1,97	460		
7,7								2720			27	20▲	0,87	62	1,97	460		
7,8									2840		26	19.5▲	0,87	62	1,97	460		
	2,6	2,3	1100							10	23	17.5*	0,82	38	1,26	460		
	3	2,6		1250						10	23	17*	0,84	38	1,26	460		
	4,4	3,8			1900					10	22	17*	0,85	38	1,26	460		***
	5,3	4,6				2300				10	22	17*	0,86	38	1,26	460	. 04	ጥጥጥ
8,6							3090				27	24.7▲	0,87	38	1,26	460		
9,5								3400			27	24.7▲	0,88	38	1,26	460		
9,5									3550		26	23.5▲	0,88	38	1,26	460		

^{*:} Intensité correspondant à une alimentation sans self (FF = 1.6).

^{▲:} Surcharge maximale admissible: 1.2 I_N pour moteur sans détecteur tachymétrique, et 1.6 I_N pour moteur équipé de détecteur tachymétrique.

Moteurs à courant continu MS 1322 S

Caractéristiques électriques

Les caractéristiques électriques sont données pour:

- alimentation en monophasé pont mixte ou en triphasé pont complet
- degré de protection IP 23
- mode de refroidissement IC 06 (V.F.)
- service continu S1
- température ambiante ≤ 40°C.

Masse: moteur à pattes76 kgMasse: moteur à bride79 kgMoment d'inertie:0.04 kg.m²Puissance d'excitation:0.3 kW

36 N.m

 $n_{\text{max méca}}$: 4000 min⁻¹

Lexique des abréviations: voir page 41.

								Self	asé	eau triph			onophase		I			
		U_{max}	R _{115°}	L	η	1	Μ	addition.					de rotatio				Р	
Délai	Indice		_		Hors excit.	_		FF=1.2	460 V	440 V	400 V	310 V	260 V	180 V	160 V	sans self	avec self	FF=1.05
		V	Ω	mH		. <u> </u>	N.m	mH	min ⁻¹	kW	kW	kW						
	-	460	10,3	325		11▲	38				840							3,3
**	. 39	460	10,3	325	0,74	10.5▲	35			920								3,4
		460	10,3	325	0,75	10▲	35		960									3,5
		460	4,53	133	0,75	12.5*	32	50					870			2,5	2,9	
		460	4,53	133	0,79	12.4*	32	50				1040				3	3,5	
**	36	460	4,53	133	0,84	16.5▲	40				1350							5,6
		460	4,53	133	0,85	16▲	38			1490								5,9
		460	4,53	133	0,85	15▲	36		1550									5,9
		460	1,96	57	0,73	20.5*	35	20							760	2,4	2,8	
	_	460	1,96	57	0,78	20*	38	20						850		2,9	3,4	
		460	1,96	57	0,82	20*	36	20					1320			4,3	5	
**	34	460	1,96	57	0,84	20*	36	20				1570				5,2	6	
		460	1,96	57	0,86	25▲	40				2050							8,6
	-	460	1,96	57	0,86	25▲	40			2250								9,5
	-	460	1,96	57	0,87	24▲	39		2360									9,6
		460	1,14	37	0,79	26*	35	15							1040	3,3	3,8	
	-	460	1,14	37	0,80	25.5*	34	15						1170		3,7	4,2	
	-	460	1,14	37	0,83	25*	33	15					1810			5,4	6,2	
***	33	460	1,14	37	0,85	25*	34	15				2150				6,6	7,6	
	-	460	1,14	37	0,87	32▲	38				2830							11,2
	-	460	1,14	37	0,88	32▲	38			3100								12,3
	-	460	1,14	37	0,88	30.5▲	36		3240									12,3
		460	0,52	32	0,83	35.2*	33	10							1540	4,7	5,4	
		460	0,52	32	0,85	35*	34	10						1720		5,4	6,2	
**	32	460	0,52	32	0,87	34.7*	32	10					2690			7,9	9,1	
	-	460	0,52	32	0,88	34.7*	32	10				3190				9,4	10,8	

^{*:} Intensité correspondant à une alimentation sans self (FF = 1.6).

 $f \Delta$: Surcharge maximale admissible: 1.2 I_N pour moteur sans détecteur tachymétrique, et 1.6 I_N pour moteur équipé de détecteur tachymétrique.

Moteurs à courant continu MS 1322 M

Caractéristiques électriques

Les caractéristiques électriques sont données pour:

- alimentation en monophasé pont mixte ou en triphasé pont complet
- degré de protection IP 23
- mode de refroidissement IC 06 (V.F.)
- service continu S1
- température ambiante ≤ 40°C.

Masse: moteur à pattes91 kgMasse: moteur à bride94 kgMoment d'inertie:0.05 kg.m²Puissance d'excitation:0.35 kW

47 N.m

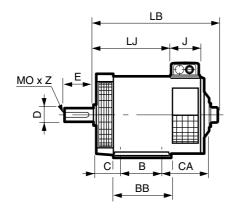
 $n_{\text{max méca}}$: 4000 min⁻¹

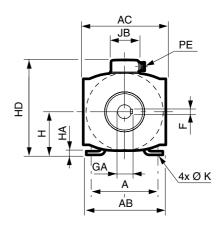
Lexique des abréviations: voir page 41.

								Self	asé	eau triph			•	Réseau m	F			
F."		$U_{\rm max}$	R _{115°}	L	η	I	Μ	addition.	400 \		tension d				1001/	1*	P	FF 4.0=
e Déla	Indice	V	0	mU.	Hors excit.	٨	Nm	FF=1.2 mH	460 V min ⁻¹	440 V min ⁻¹	400 V min ⁻¹	310 V min ⁻¹	260 V min ⁻¹	180 V min ⁻¹	160 V min ⁻¹	sans self kW	avec self kW	FF=1.05 kW
		460	Ω 6,92	mH 271	0,73	A 14▲	N.m 47		111111	111111	840		1111111			KVV	KVV	4,1
7		460	6,92	271	0,73	14▲	47			920								4,1
**	37	460	6,92	271	0,73	13.5▲	46		960									4,6
		460	3,52	131	0,74	16*	42	50					820			3,1	3,6	
		460	3,52	131	0,74	15.6*	43	50				980	020			3,8	4,4	
**	35	460	3,52	131	0,78	19.2▲	48				1270					- 3,0	4,4	6,4
, ক ৰ		460	3,52	131	0,84	19.2▲	49			1390	1270							7,1
		460	3,52	131	0,84	18.5▲	47		1460	1000								7,1
		460	2.28	104	0,76	20.5*	46	30	1400				980			4,1	4,7	
		460	2,28	104	0,70	20.5	47	30				1170	300			5	5,8	
* *	34	460	2,28	104	0,84	24▲	51				1520	1170						8,1
. 474	. 04	460	2,28	104	0,85	24▲	53			1670	1020							9,2
		460	2,28	104	0,85	23.5▲	50		1740	1070								9,2
		460	1,32	49	0,72	26*	45	15							750	3	3,5	
		460	1.32	49	0,77	25.5*	45	15						840		3,5	4	
		460	1,32	49	0,81	25*	44	15					1310			5,3	6,1	
**	33	460	1,32	49	0,83	25*	45	15				1560				6,4	7,4	
444	. 00	460	1.32	49	0.85	32▲	51				2030							10,9
		460	1,32	49	0,86	32▲	50			2240								11,7
		460	1,32	49	0,86	30.5▲	49		2320									12
		460	0,33	21	0,79	35.2*	44	10							1120	4,5	5,2	
		460	0,33	21	0,81	35*	44	10						1260		5,1	5,8	
		460	0,33	21	0,84	34.7*	42	10					1960			7,6	8,7	
**	32	460	0,33	21	0,86	34.7*	43	10				2340				9,2	10,6	
		460	0,33	21	0,88	48▲	53				3050							16,8
		460	0,33	21	0,88	48▲	53			3350								18,5
		460	0,33	21	0,88	46▲	50		3500									18,5

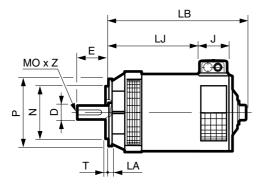
^{*:} Intensité correspondant à une alimentation sans self (FF = 1.6).

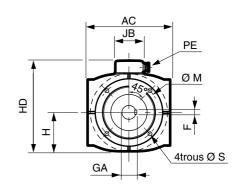
f a: Surcharge maximale admissible: 1.2 I_N pour moteur sans détecteur tachymétrique, et 1.6 I_N pour moteur équipé de détecteur tachymétrique.


MS1


Dimensions

F1 - Encombrements MS1

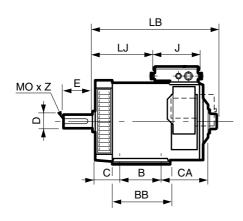

Cotes d'encombrement des moteurs à courant continu ouverts MS 801 à 1321

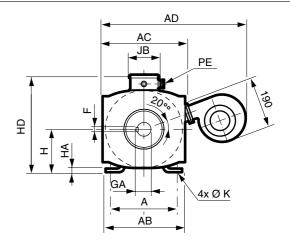

- à pattes

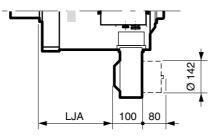
- à bride (FF) de fixation à trous lisses

Moteur							Dim	ensions	princip	ales							Mass	e (kg)
MS1 taille	Α	AB	AC	В	BB	С	CA	Н	HA	HD	J	JB	K	LB	LJ	PE	pattes	bride
801 L	125	150	160	100	120	50	151	80	2	204	80	80	9	316	167	16	20	21
1001 L	160	185	200	140	170	63	161	100	3	248	80	80	10	364	227	16	37	38
1121 M	190	220	225	140	170	70	205	112	3	272	80	80	12	414	278	16	54	57
1321 S	216	250	260	140	180	89	202	132	3	332	163	163	12	471	218	21	74	77
1321 M	216	250	260	178	218	89	224	132	3	332	163	163	12	491	278	21	89	92

Moteur			Bride	à trous l	isses			Bout d'arbre							
MS1 taille	LB	М	N j6	Р	LA	S	Т	D j6	Е	F	GA	0	Z		
801 L	353	115	95	140	10	9	3	14	30	5	16	M5	12		
1001 L	402	130	110	160	10	9	3,5	19	40	6	21,5	M6	12		
1121 M	456	165	130	200	12	11	3,5	24	50	8	27	M8	15		
1321 S	518	215	180	250	14	14	4	28	60	8	31	M10	20		
1321 M	538	215	180	250	14	14	4	28	60	8	31	M10	20		

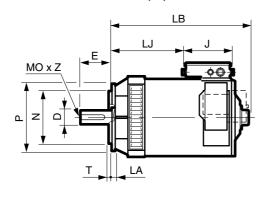

MS2

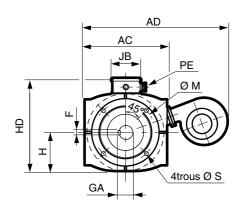

Dimensions


F2 - Encombrements MS2

Cotes d'encombrement des moteurs à courant continu ouverts MS 1122 & 1322

- à pattes





1/2 vue de dessus

- à bride (FF) de fixation à trous lisses ou (FT) à trous taraudés

Moteur							Din	ensions	princip	ales								
MS2 taille	Α	AB	AC	AD	В	BB	С	CA	Н	НА	HD	J	JB	K	LB	LJ	LJA	PE
1122 M	190	220	223	427	140	170	70	179	112	4	290	160	110	12	417	210	257	*
1322 S	216	250	260	460	140	180	89	200	132	5	329	160	110	12	454	213	290	*
1322 M	216	250	260	460	178	218	89	202	132	5	329	160	110	12	494	253	330	*

^{*:} voir répartition page 20.

Moteur		E	Bride à	trous li	sses F	F			Bride à trous taraudés FT								Вс	out d	l'arbre		
MS2 taille	LB	М	N j6	Р	LA	S	Т	LB	М	N j6	Р	LA	S	Т	D j) E		F	GA	0	Z
1122 M	462	215	180	250	12	15	4	420	165	130	200	-	M10	3,5	28	60)	8	31	M10	22
1322 S	501	265	230	300	14	15	4	454	215	180	250	-	M12	4	38	80		10	41	M12	28
1322 M	544	265	230	300	14	15	4	494	215	180	250	-	M12	4	38	80		10	41	M12	28

MS2

Equipements optionnels

G1 - Ventilation (MS2)

G1.1 - DETECTION DE FLUX D'AIR

Un relais pressostatique permet de détecter l'arrêt du moteur de ventilation. C'est un pressostat de surveillance de flux d'air ; il ne peut donc constituer une protection suffisante contre la diminution du débit d'air (encrassement du filtre, obstruction partielle à l'arrivée ou à la sortie d'air).

Réglé en usine, il s'agit d'un inverseur unipolaire dont le pouvoir de coupure est de 1 A sous 250 V. Le raccordement est du type "Faston".

Ce détecteur est monté sur la ventilation forcée.

G1.2 - FILTRE A AIR

En cas d'atmosphère simplement poussiéreuse, choisir impérativement l'option "Filtre à air" en mode de refroidissement IC 06. Cette dernière ne sera retenue que si l'entretien régulier peut être opéré (éviter le colmatage du filtre); dans le cas contraire, utiliser le mode de refroidissement IC 17.

Le carter du ventilateur peut recevoir un filtre à l'aspiration pour un environnement relativement poussiéreux (protection IP 20; prévoir une tôle parapluie pour IP 23).

Constitué d'éléments filtrants en polyester,

interchangeables, d'efficacité gravimétrique moyenne ASHRAE 52/76 de 88%, difficilement inflammable (classe F1 suivant DIN 53438), il est régénérable par nettoyage :


 succinct par secouage ou jet d'air comprimé
 complet par trempage quelques heures dans un bain détersif non agressif, puis rinçage à l'eau claire et séchage avant remontage.

Nous recommandons un remplacement des éléments filtrants au-delà de deux ou trois lavages.

Cotes d'encombrement pour filtre

Moteur	Filtre AJ RB								
MS2 taille	AJ	RB							
1122	Ø 142	80							
1322	Ø 142	80							

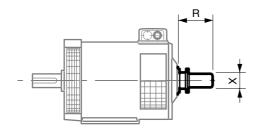
MS1 - MS2

Equipements optionnels

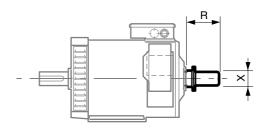
G2 - Détection de vitesse

G2.1 - DYNAMO TACHYMETRI- QUE

Nécessaire dans la plupart des cas d'équipement à vitesse variable, la dynamo tachymétrique délivre une tension continue proportionnelle à sa vitesse et changeant de polarité avec le sens de rotation.

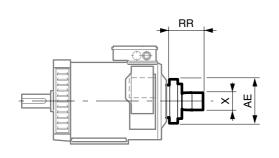

Tous les moteurs MS peuvent être équipés en option d'une bride d'adaptation et d'un entraîneur avec un accouplement à denture bombée sans jeu (type Tacke Junior M14 ou équivalent) qui permet de monter aisément les dynamos les plus usuelles. Caractéristiques des dynamos tachymétriques

Туре	REO 444N ou équivalent	REO 444R ou équivalent	RDC 15* ou équivalent		
Courant maxi	0.18 A	0.18 A	0.1 A		
Masse	1.8 kg	2.8 kg	1.6 kg		
Montage	Accouplement	Accouplement	Arbre creux		
Nombre de sorties	1 ou 2 col.	1 ou 2 col.	1 collecteur		
Ø bout d'arbre	7 mm	11 mm	16 mm creux		
Protection	IP 44	IP 54	IP 44		
Raccordement	par fils	boîte à bornes	boîte à bornes		
Tension (à 1000 min ⁻¹)	60 V	60 V	60 V		


^{*:} uniquement avec tailles 1122 & 1322.

Cotes d'encombrement pour dynamos tachymétriques

▼ MS 801, 1001, 1121 & 1321


▼ MS 1122 & 1322

Moteur		REC	444			REO	444R		RD	C 15
MS	1 Coll	lecteur	2 Colle	ecteurs	1 Coll	ecteur	2 Colle	ecteurs	1 Coll	ecteur
taille	R	X	R	X	R	Х	R	X	R	Χ
801	159	75	175	75	169	94	188	94	-	-
1001	158	75	174	75	168	94	187	94	-	-
1121	158	75	174	75	168	94	187	94	-	-
1122	157	75	173	75	167	94	186	94	43	90
1321	158	75	174	75	168	94	187	94	-	-
1322	159	75	175	75	169	94	188	94	51	90

Cotes d'encombrement pour frein + détecteur tachymétrique (MS2)

▼ MS 1122 & 1322

Moteur	REO 444						REO 444R							
MS	1 (Collecte	ur	2 C	ollecte	urs	1 (Collecte	eur	2 0	ollecte	urs		
taille	AE	RR	Χ	AE	AE RR X			RR	Х	AE	RR	Х		
1122	162	226	75	162	242	75	162	236	75	162	181	75		
1322	204	240	75	204	256	75	204	250	75	204	223	75		

Moteur		RDO	C 15			TI	D 3			KT	D3			
MS	1 Collecteur					1 Coll	ecteur		1 Collecteur					
taille	AE	RR	XA	XB	AE	RR	XA	XB	AE	RR	XA	XB		
1122	162	103	90	90	162	71	50	52	162	91	50	70		
1322	204	132	90	90	204	90	50	52	204	109	50	70		

MS1 - MS2

Equipements optionnels

G2.2 - GENERATEUR D'IMPUL-SIONS (GI ou codeur)

Monté uniquement sur les tailles 1122 & 1322, il délivre un nombre d'impulsions proportionnel à la vitesse du moteur.

De type PB1 057 6R (Hohner ou équivalent), ce générateur à impulsions est de type "push - pull", à sortie 2 voies + complément. Il peut être alimenté dans une plage de tension de 11 à 30 volts redressés.

Pour longueur supérieure à 20 m, les câbles seront à paires torsadées. La longueur maxi des câbles (blindés) ne devra pas excéder 500 m sur entrée opto coupleur.

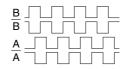
Résolution R

Elle se calcule par la formule suivante:

$$R \le 60 \text{ x } F_{\text{max}} / n$$

avec

 $F_{\rm max}$: fréquence maximale admissible par le variateur (100 kHz pour le DMV 2342 de LEROY-SOMER) en Hz


n : vitesse du moteur en min⁻¹.

Caractéristiques des GI

Type GI	PB1 057 6R ou équivalent
Courant maxi	40 mA
Ondulation maxi	500 mV
Courant maxi à vide	90 mA
Nombre de sorties	2+complément
Ø bout d'arbre	10 mm
Protection	IP 44
Raccordement	Connecteur 9416
Tension*	11 à 30 V

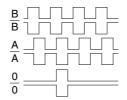
Forme du signal

Etages de sortie

G2.3 - DYNAMO TACHYME-TRIQUE PLUS GENERATEUR D'IMPULSIONS

C'est la combinaison d'une dynamo et d'un GI monté directement sur la dynamo.

La désignation de cet ensemble est la suivante :

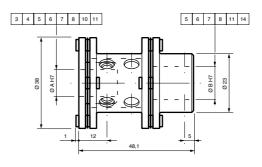

REO 444R 1C (ou 2C) 54 B 1x0,06 (ou 2x0.06) CA / AK 56 5 9 ... (Résolution).

Les caractéristiques de la dynamo sont celles du §1.

Le générateur d'impulsion est à 3 voies complémentées, tension redressée 11 à 30 V. La résolution se calcule comme au paragraphe précédent.

Cette option n'est valable que pour les tailles 1122 & 1322.

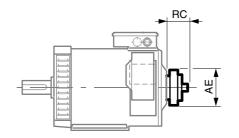
Forme du signal

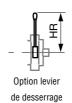


G2.4 - ACCOUPLEMENT POUR DETECTEUR DE VITESSE

La bride de fixation et l'entraîneur devront être rigides, de type métallique sans jeu angulaire. L'entraîneur généralement utilisé G5000C est de ce type; il peut être monté pour tous les détecteurs de vitesse mis dans ce catalogue.

Cotes d'encombrement de l'entraîneur G5000C


MS₂


Equipements optionnels

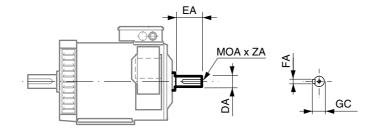
G3 - Options mécaniques

G3.1 - FREIN MECANIQUE

Cotes d'encombrement des freins types 450

Moteur		Type 450*	
MS taille	AE	HR	RC maxi
1122	162	146	70
1322	204	196	85

^{*:} voir cotes dynamos tachymétriques page 49.


G3.2 - BRIDES EXECUTABLES SUR OPTION

Les dimensions de bride à trous lisses ou à trous taraudés données dans le tableau ci-dessous sont exécutables en options; voir figurines pages 46 & 47.

Moteur			Bride à trous lisses FF												Br	ide à tr	ous tar	audés	FT	
MS taille	LB	М	N j6	Р	LA	S	Т	М	N j6	Р	LA	S	Т	LB	М	N j6	Р	LA	S	Т
801	353	130	110	160	10	10	3,5	165	130	200	10	12	4	316	115	95	140	-	M8	3
1001	402	165	130	200	10	12	4	-	-	-	-	-	-	364	165	130	200	-	M10	4
1121	475	215	180	250	12	15	4	-	-	-	-	-	-	415	165	130	200	-	M10	4
1122	462	165	130	200	12	11	3,5	-	-	-	-	-	-	-	-	-	-	-	-	-
1321 S	478	165	130	200	10	12	14	-	-	-	-	-	-	-	-	-	-	-	-	-
1321 M	538	165	130	200	10	12	14	-	-	-	-	-	-	-	-	-	-	-	-	-
1322 S	501	165	130	200	10	12	14	215	180	250	14	14	4	-	-	-	-	-	-	-
1322 M	544	165	130	200	10	12	4	215	180	250	14	14	4	-	-	-	-	-	-	-

G3.3 - DEUXIEME BOUT D'ARBRE

Cotes d'encombrement

Moteur			Bout o	l'arbre		
MS taille	DA	EA	FA	GC	OA*	ZA
1122	19 j6	40	6	21,5	M6	16
1322	22 j6	50	6	24,5	M8	19

^{*:} suivant norme DIN 332.

Frein + détecteur tachymétriques: voir page 49.

G3.4 - EXECUTION AUX NOR-MES NEMA

Si votre client exige la conformité aux normes Nema, les moteurs de la série MS peuvent être réalisés selon ces Normes: nous consulter.

G3.5 - MONTAGE UNIVERSEL

Il permet d'accoupler le moteur de série (bride et bout d'arbre CEI) sur les réducteurs LEROY-SOMER:

- à engrenages parallèles gamme Compabloc 2000,
- à couple conique et engrenages parallèles gamme Orthobloc 2000,
- à axes parallèles et sortie arbre creux gamme Manubloc 2000.

Toutes les informations utiles sur cette option et sur les réducteurs sont données dans nos catalogue "Cb 2000 réducteur à arbre coaxiaux" référence 490, "MANUBLOC 2000 réducteur plat à arbre creux" référence 1031 et "Ot 2000 réducteur à couple conique" référence 806.

MS1 - MS2

Maintenance / Installation

H1 - Chute de tension dans les câbles

Vérifier la conformité des câbles, en fonction de leur longueur, avec les tensions et intensités devant y circuler. Se référer à la norme C15.100.

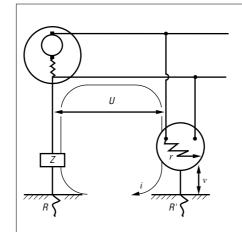
H2 - Impédance de mise à la terre

Le décret n° 62.1454 du 14 Novembre 1962 relatif à la protection des travailleurs dans les établissements qui mettent en œuvre des courants électriques impose, lorsque le neutre est relié à la terre par une impédance de limitation, que la valeur efficace du produit du courant de défaut par la résistance de la prise de terre de la masse où a lieu le défaut ne dépasse pas :

- 24 V dans les locaux ou emplacements de travail très conducteurs.
- 50 V dans les autres cas.

(Réf. norme UTE C 12.100 - page 12, Article 32)

On peut écrire :


$$v = R'i$$

et
$$U = (Z+R+R'+r)i$$

d'où
$$Z = R' \times \frac{U}{V} - (R + R' + r)$$

et par conséquent :

$$Z \ge R' \times \frac{U}{v_L} - (R + R' + r)$$

U: tension d'induit

Z : impédance de limitation

R : résistance de la prise de terre du neutre

R': résistance de la prise de terre de la masse où a lieu le défaut

r : résistance interne du défaut

i : courant de défaut

v : potentiel de la masse considérée par rapport à la terre

v_i: valeur limite imposée pour ce potentiel

Exemple 1

Local très conducteur avec :

$$R = 3 \Omega$$

$$R' = 20 \Omega$$

$$r = 10 \Omega$$

$$U = 440 \text{ V}$$

$$Z \ge 20 \times \frac{440}{24} - (3 + 20 + 10) = 334 \Omega$$

Exemple 2

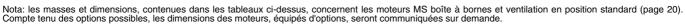
Autre cas:

$$R = 6 \Omega$$

$$R' = 10 \Omega$$

$$r = 0 \Omega$$

$$Z \ge 10 \times \frac{600}{50} - (6 + 10 + 0) = 104 \Omega$$


H

Moteurs à courant continu MS1 - MS2 Maintenance / Installation

H3 - Masses et dimensions des emballages

Moteur	TRANSPORTS ROUTIERS								
MS	IM	В3	IM B	IM B5 - IM V1					
taille	Tare (kg)	Tare (kg) Dimensions en mm (L x I x H) Tare (kg)							
	Carton								
801	5	434 x 160 x 225	5	434 x 160 x 225					
1001	6	504 x 200 x 262	6	504 x 200 x 262					
	Caisse carton sur palette								
1121	15	600 x 260 x 300	15	600 x 260 x 300					
1122	15	600 x 260 x 300	15	600 x 260 x 300					
1321	20	720 x 260 x 350	20	720 x 260 x 350					
1322	20	720 x 260 x 350	20	720 x 260 x 350					

Moteur	CAISSES MARITIMES								
MS	IM	В3	IM B5	- IM V1					
taille	Tare (kg)	Dimensions en mm (L x I x H)	Tare (kg)	Dimensions en mm (L x I x H)					
	Caisses barrées à panneaux contre-plaqué								
801	10	450 x 170 x 230	10	450 x 170 x 230					
1001	12	520 x 220 x 270	12	520 x 220 x 270					
1121	20	600 x 260 x 300	20	600 x 260 x 300					
1122	20	600 x 260 x 300	20	600 x 260 x 300					
1321	26	720 x 260 x 350	26	720 x 260 x 350					
1322	26	720 x 260 x 350	26	720 x 260 x 350					

Ces valeurs sont données pour des emballages individuels. Dans le cas d'expédition groupée, nous consulter pour connaître si nécessaire les dimensions du conditionnement.

Moteurs à courant continu MS1 - MS2

Maintenance / Installation

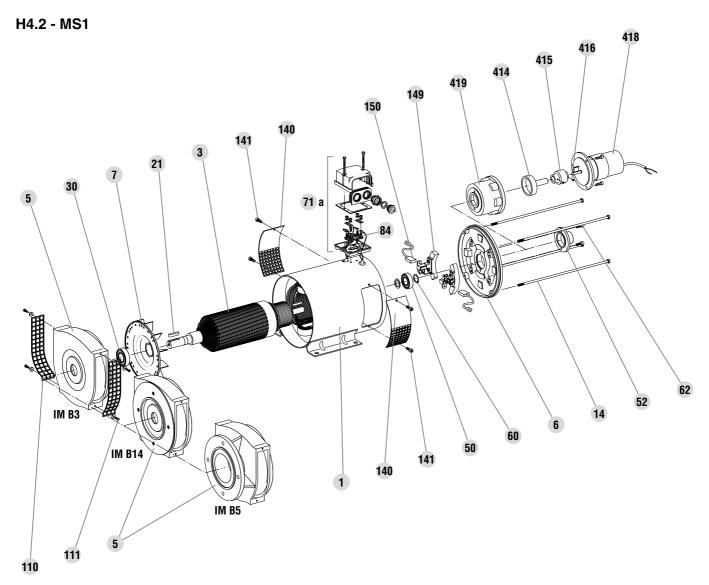
H4 - Identification

H4.1 - PLAQUE SIGNALETIQUE

• IEC:	34.1. 19	90	ZLER SO	OY® M <i>ER</i>	MA FR	DE IN ANCE	
 	MOT Di	EUR A C	COURA	NT CO	NTINU FOR	-	
TYPE: MS	1122 M	06 N	° 700000	/5 9	/1992 M	56 kg	
Classe / In	s class H	IN	и 1001	ΙP	23 IC	06	
M _{nom} / Rate	ed torque	26 N.m	Altit.	1000 n	n Temp.	40 °C	
	kW	min ⁻¹	٧	Α	V	Α	
Nom./Rat.	6,1	2270	440	16	340	1,3	
T Système peinture: I Induit / Arm. Excit. / Field							
○ Service / Duty S1 DE 6207 2RS C3 NDE 6204 2RS C3 ○							

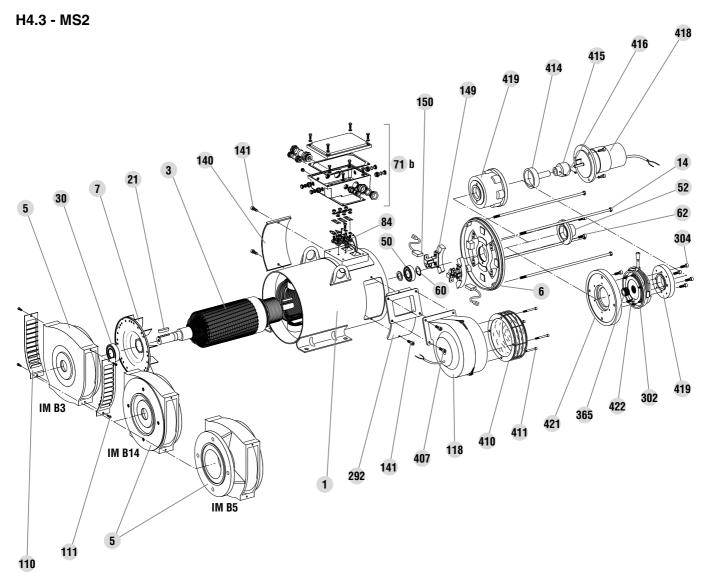
▼ Définition des symboles des plaques signalétiques

MS	: Type	M…kg	: Masse	Roule	ments
112	: Hauteur d'axe	I cl. H	: Classe d'isolation H	DE	:Drive end
2	: Série	IM 1001	: Position de fonctionnement		Roulement coté entraînement
M	: Symbole du stator	IP 23	: Indice de protection	NDE	:Non drive end
06	: Indice constructeur	IC 06	: Indice de refroidissement		Roulement coté opposé
T	: Indice d'imprégnation	M _{nom}	: Moment nominal		à l'entraînement
I	: Système de peinture	Altit.	: Altitude maximale de fonc-		



tionnement en mètres : Température d'ambiance de N° moteur Temp. fonctionnement maximale N° : Numéro série moteur 5 : N° d'ordre dans la série 9 : Mois de production Nom : Caractéristiques nominales 1992 : Année de production kW : Puissance min⁻¹ : Nombre de tours par minute ٧ : Tension d'induit : Intensité d'induit : Tension d'excitation : Intensité d'excitation : Autres points de fonctionnement

Informations à rappeler pour toute commande de pièces de rechange


Moteurs à courant continu MS1 Maintenance / Installation

Moteur MS1							
Rep.	p. Désignation Rep. Désignation				Désignation		
1	Stator bobiné	52	Chapeau (pour moteur sans option)	149	Ensemble porte-balais		
3	Induit bobiné	60	Circlips roulement NDE	150	Balais		
5	Flasque côté accouplement (DE)	62	Vis de fixation pour 52 et/ou 160	414	Entraîneur		
6	Flasque arrière (NDE)	71 a	Boîte à bornes plastique	415	Manchon d'accouplement		
7	Ventilateur	84	Planchette à bornes	416	Vis pointeau		
14	Tiges de montage	110	Grille de ventilation	418	Dynamo tachymétrique		
21	Clavette de bout d'arbre	111	Rivets de fixation de grille 110	419	Lanterne		
30	Roulement côté accouplement (DE)	140	Porte de visite flasque NDE				
50	Roulement arrière (NDE)	141	Vis de fixation 140				

Moteurs à courant continu MS2 Maintenance / Installation

Moteur MS2							
Rep.	Désignation	Rep.	Désignation	Rep.	Désignation		
1	Stator bobiné	71 b	Boîte à bornes métallique	365	Moyeu canelé		
3	Induit bobiné	84	Planchette à bornes	407	Vis de fixation carter de ventilation		
5	Flasque côté accouplement (DE)	110	Persiennes de ventilation	410	Filtre (option)		
6	Flasque arrière (NDE)	111	Vis de fixation de grille 110	411	Vis de fixation du filtre		
7	Ventilateur	118	Ventilation forcée	414	Entraîneur		
14	Tiges de montage	140	Porte de visite flasque NDE	415	Manchon d'accouplement		
21	Clavette de bout d'arbre	141	Vis de fixation 140	416	Vis pointeau		
30	Roulement côté accouplement (DE)	149	Ensemble porte-balais	418	Dynamo tachymétrique		
50	Roulement arrière (NDE)	150	Balais	419	Lanterne		
52	Chapeau (pour moteur sans option)	292	Buse de raccordement	421	Bride de fixation du bloc		
60	Circlips roulement NDE	302	Bloc frein	422	Vis de fixation de la bride		
62	Vis de fixation pour 52 et/ou 160	304	Vis de fixation du bloc frein				

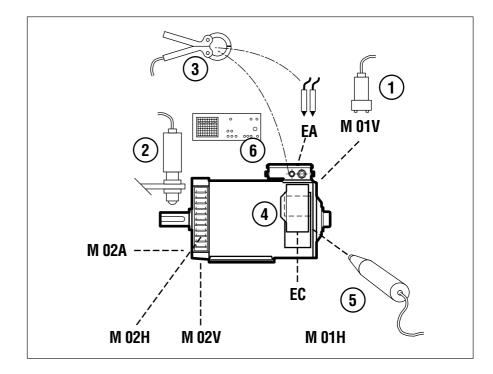
H

Moteurs à courant continu

MS1 - MS2

Maintenance / Installation

H5 - Maintenance


LEROY-SOMER met à disposition des utilisateurs, des notices d'installation et de maintenance, relatives à chaque produit ou familles de produits. Ces notices qui accompagnent généralement le produit sont aussi disponibles sur demande auprès des réseaux technicocommerciaux LEROY-SOMER. Pour obtenir facilement ces notices, il est recommandé de rappeler la désignation complète du produit.

LEROY-SOMER propose à travers son réseau Maintenance Industrie Services, un système et des contrats de maintenance préventive.

Ce système **DIAMIS** permet la prise de données sur site des différents points et paramètres décrits dans le tableau ci-dessous.

Une analyse sur support informatique fait suite à ces mesures et donne un rapport de comportement de l'installation.

Ce bilan met, entre autres, en évidence les balourds, les désalignements, l'état des roulements, les problèmes de structure, les problèmes électriques (forme de courant, etc.), ...

Contrôles visuels (maintenance) plus:

- 1 Accéléromètre : mesures vibratoires
- (2) Cellule photo-électrique : mesures de vitesse et équilibrage)
- 3 Pince ampèremétrique (à effet hall) : mesures d'intensité (triphasé, moteur de la ventilation, et continu)
- (4) Pointes de touche : mesures de tension
- 5 Sonde infrarouge: mesures de température
- 6 Oscilloscope: contrôle du courant d'induit

Type d'appareil	Position des points de mesures							
de mesure	M 01V	M 01H	M 02V	M 02H	M 02A	Arbre	EA	EC
1								
Accéléromètre								
2								
Cellule photo-électrique								
3								
Pinces ampèremétriques								
4								
Pointes de touche								
5								
Sonde infrarouge								
6								
Oscilloscope								

Moteurs à courant continu Récapitulatif du standard MS1 - MS2

EXECUTION STANDARD

Les moteurs MS1 de série sont réputés conformes, sauf stipulations contraires, au standard récapitulé ci-dessous:

conformité aux normes	p.9
protection IP 20	p.13
• système de peinture (RAL 7035)	p.12
construction à pattes ou à bride (FF)	p.13
• roulements à billes	p.15
refroidissement IC 01	p.19
boîte à bornes en position A1 (dessus)	p.20
deux sens de rotation	p.22
système d'isolation classe F	p.27
classe d'équilibrage N	p.34
1 arbre standard	p.46

Les moteurs MS2 de série sont réputés conformes, sauf stipulations contraires, au standard récapitulé ci-dessous:

conformité aux normes	p.9
protection IP 23	p.13
système de protection T	p.12
système de peinture (noire RAL 9005)	p.12
construction à pattes ou à bride (FF ou FT)	p.13
• roulements à billes	p.15
refroidissement IC 06	p.19
boîte à bornes en position A1 (dessus)	p.20
• ventilation forcée en position B (à droite vu bout d'arbre)	p.20
deux sens de rotation	p.22
système d'isolation classe H	p.27
classe d'équilibrage N	p.34
sondes thermiques PTO	p.35
1 arbre standard	p.47

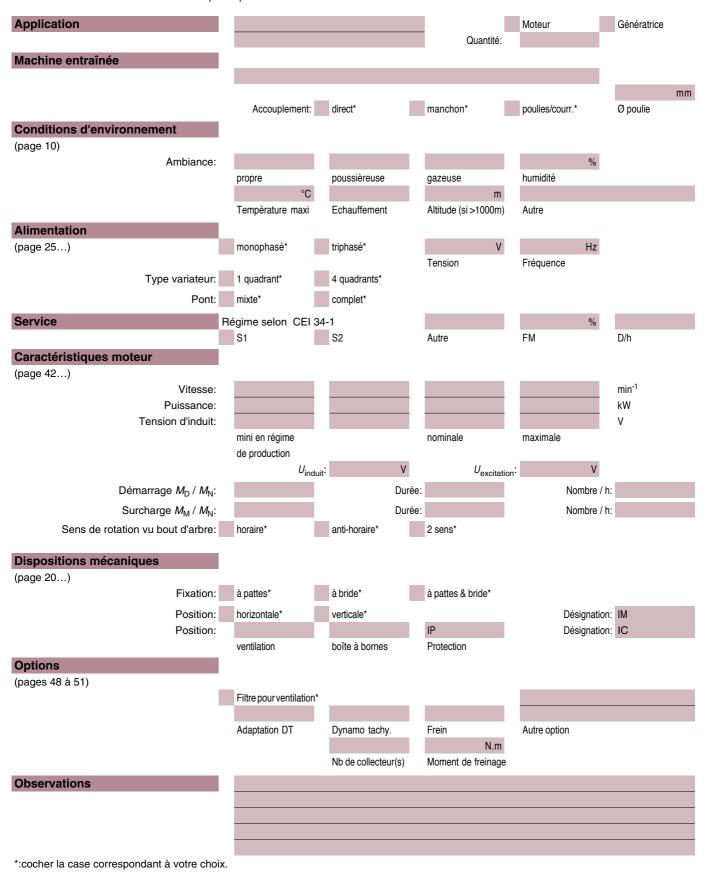
Chaque moteur passe en fin d'assemblage un essai dit de routine, phase finale de la qualité appliquée à la fabrication. Sur demande, un procès verbal de cet essai peut être fourni. La série MS2 est susceptible d'être équipée d'options. Suivant le cas, elles peuvent être rapidement adaptables. Consulter le chapitre "Equipements optionnels" pages 48 à 51 et le chapitre "Disponibilité en fonction de la construction" page 40.

SELECTION

Il faut se reporter au chapitre "Méthode et aide à la sélection" pages 38 & 39 pour la procédure et les exemples de sélection. D'éventuels facteurs de correction sont à prendre en considération selon l'environnement ou l'application: ils sont indiqués aux chapitres correspondants.

Nota: un guide, "Informations nécessaires à la commande" facilite la détermination en respectant les besoins réels de l'utilisation: il se trouve page suivante. LEROY-SOMER vous invite à remplir ce questionnaire pour vous assurer que votre moteur répondra parfaitement à votre besoin.

Tout renseignement non fourni à la commande ne pourra pas être retenu par la suite en cas de contestation de conformité ou de problème de fonctionnement dû à un manque d'information.


N'hésitez pas à demander conseil à votre agent LEROY-SOMER. Nos 450 agences, points de vente ou de service répartis dans le monde sont votre meilleure garantie de service.

Moteurs à courant continu MS1 - MS2

Informations nécessaires à la commande

Informations à fournir à LEROY-SOMER pour optimiser le moteur en fonction de son utilisation.

